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Abstract With the development of the bike-sharing
system (BSS) and the introduction of green and low
carbon development, the environmental impacts of BSS
had received increasing attention in recent years. However,
the emissions from the rebalancing of BSS, where fossil-
fueled vehicles are commonly used, are usually neglected,
which goes against the idea of green travel in a sharing
economy. Previous studies on the bike-sharing rebalancing
problem (BRP), which is considered NP-hard, have mainly
focused on algorithm innovation instead of improving the
solution model, thereby hindering the application of many
existing models in large-scale BRP. This study then
proposes a method for optimizing the CO2 emissions
from BRP and takes the BSS of Beijing as a demonstration.
We initially analyze the spatial and temporal characteristics
of BSS, especially the flow between districts, and find that
each district can be independently rebalanced. Afterward,
we develop a rebalancing optimization model based on a
partitioning strategy to avoid deciding the number of bikes
being loaded or unloaded at each parking node. We then
employ the tabu search algorithm to solve the model.

Results show that (i) due to over launch and lack of
planning in rebalancing, the BSS in Beijing shows great
potential for optimization, such as by reducing the number
of vehicle routes, CO2 emissions, and unmet demands;
(ii) the CO2 emissions of BSS in Beijing can be reduced by
57.5% by forming balanced parking nodes at the end of the
day and decreasing the repetition of vehicle routes and the
loads of vehicles; and (iii) the launch amounts of bikes in
specific districts, such as Shijingshan and Mentougou,
should be increased.

Keywords bike-sharing, CO2 emissions, environmental
benefit, partitioning strategy, rebalancing problem*

1 Introduction

Since 2006, China has surpassed the US as the largest
carbon emitter in the world (Wei et al., 2019). The carbon
emission level of the country even reached 13.92 billion
tons in 2019. However, given the impact of the COVID-19
pandemic, the largest carbon-emitting countries in the
world have reported reduced emission levels, with China
reporting only a 1.7% decrease (Friedlingstein et al.,
2020). Transportation is the way that consumes large
amount of energy and emits huge quantities of CO2 (Chen
et al., 2020). As a super-large city in China, Beijing has a
ring-shaped spatial road distribution, with most outsiders
residing within the periphery of Beijing to work in the
business centers located at the middle of the city. These
trends have resulted in a tidal traffic travel phenomenon
with adversarial impacts on the environment (Zheng et al.,
2017). For instance, from 2014 to 2018, the air quality
index (AQI) of Beijing only reached a fair level
(AQI< 100) in 20 months (Chen et al., 2020). To improve
the road environment and reduce traffic emissions in
Beijing, the city traffic management department has
increased its public transport infrastructures every year
and formulated policies related to the purchase and use of
cars, but the effects of these initiatives are generally
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insignificant (Yu et al., 2017).
As a new business model, sharing economy has gained

much popularity in recent years. This model has been
proven to solve several types of challenges, including
social inequality, economic improvement, and environ-
mental problems (Jie et al., 2020). As a representative
product of sharing economy, the bike sharing system
(BSS) is booming in the Chinese market. Despite existing
for half a century, BSSs have significantly grown in their
prevalence and popularity across the world only in the past
decade (Fishman et al., 2013; Ricci, 2015). With over 400
BSSs, China is far ahead in its number of bicycles; three
out of four public-use bicycles in the world are in the
country (de Maio and Meddin, 2014). With an aim to
address the “last kilometer” travel demand, BSS advocates
energy conservation, environmental protection, and green
low-carbon travel. Regardless of enabling “last kilometer”
short distance travel or connecting people to other modes
of public transportation, BSS has an important role in one’s
everyday life and is expected to become a new green
transportation mode after subway trains, buses, and public
bicycles. Therefore, the environmental impacts of BSS
have received increasing attention in recent years.
The bike-sharing rebalancing problem (BRP), which

focuses on balancing the bike supply and demand of
parking nodes, remains a key issue to be solved by BSSs.
Given its important theoretical and practical application
values and attention from the society and academia, BRP is
considered a selective pick-up and drop-off NP (non-
deterministic polynomial)-hard problem (Ting and Li,
2013). Unlike the general traveling salesman problem
(TSP), given the demand of nodes and the limited
rebalancing vehicle capacity (Q), BRP requires one to
determine the number of bikes being picked up or dropped
off at nodes, thereby increasing its complexity.
To meet the demand of a large number of bike-sharing

users in the next morning and to consider the length of
routes for the rebalancing, trucks are necessary to achieve
rebalancing in a medium BSS (Wang and Szeto, 2018).
However, these trucks usually consume gasoline or diesel
and emit pollutants, which contradicts the green travel
goals advocated by enterprises operating BSSs. However,
only few studies have focused on the environmental
impacts of BRP.
Some studies on the environmental benefits of rebalan-

cing have used a small amount of randomly generated data
and solved their models via numerical analysis (Shui and
Szeto, 2018; Wang and Szeto, 2018) instead of using real
BSS order data. As an NP-hard problem, BRP has a
solution time that increases exponentially along with its
scale, thereby hindering the application of the aforemen-
tioned methods in municipal-level BRP (Ting and Li,
2013). Meanwhile, a trade-off relationship can be observed
between the total unmet demand and the total fuel and CO2

emission cost in rebalancing (Shui and Szeto, 2018).

Traditional environmental research on rebalancing have
used a rebalancing model that requires meeting the target
number of bikes at each node. According to theory of
diminishing marginal benefits, rebalancing the last few
bicycles imposes huge economic and environmental costs,
thereby resulting in a limited emission reduction space.
To fill these research gaps, by using large amounts of

real BSS order data from Mobike in Beijing, we analyze
the temporal and spatial characteristics of BSS and use the
clustering algorithm based on order demand to locate bike
parking nodes. We also propose a partition strategy based
on the supply and demand of rebalancing to reduce the
scale of BRP and to avoid deciding the number of bikes
being loaded and unloaded in nodes. We then modify an
optimization model by balancing the cost of minimizing
CO2 emissions and the loss of unmet demand. The overall
aim of this paper is to develop a method for optimizing
CO2 emissions from BRP that can be applied to real BSS
scenarios and reduce CO2 emission in rebalancing.
The findings of this work are expected to provide

theoretical and practical contributions. First, these findings
can help Beijing set up bike parking nodes and weigh the
environmental costs and loss of unmet demand in the
rebalancing so as to reduce its operational costs and CO2

emissions and to ensure the sustainability of BSS as a
green travel mode. The proposed methods and model can
also be applied to BRP in other cities. Second, the
clustering algorithm can be used to locate parking nodes in
dockless BSS. Third, the applied partition strategy and
improved model can address the difficulties encountered
when applying the rebalancing model to actual BSS.
Fourth, the influencing factors of CO2 emissions in
rebalancing can provide a basic model for future rebalan-
cing low carbon research.
The rest of this paper is organized as follows. Section 2

summarizes the BRP literature. Section 3 presents the
temporal and spatial characteristics of BSS in Beijing.
Section 4 evaluates the CO2 emissions of current
rebalancing in Beijing and optimizes rebalancing by
proposing a partitioning strategy and improving the
existing rebalancing model. Section 5 discusses the
environmental impacts of the optimization and compares
the proposed method with the current rebalancing
approaches. Section 6 concludes the paper.

2 Literature review

We initially review previous research on the environmental
impacts of BSS (including rebalancing). Afterward, we
discuss two types of BRP, namely, static and dynamic
BRPs, and describe the existing mathematical models used
in studying BRP, including assumption and objective
functions in models. We eventually focus on the algorithms
used in the literature for solving BRP models.
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2.1 Environmental impacts of BSS

Previous studies (Shaheen et al., 2010; Zhang and Mi,
2018) have only highlighted the direct environmental
impacts of BSS (i.e., direct emission reduction from
replacing private car trips with shared bike travels) yet did
not consider the more complex and indirect environmental
impacts such as negative (e.g., increase in the number of
motor vehicles used for bike rebalancing) and unintended
effects (e.g., abandoning surplus bikes) (Frenken and
Schor, 2017; Taylor, 2018). Fishman et al. (2014) found
that bike sharing reduced motor vehicle use in Melbourne,
Australia and in Minneapolis andWashington DC, US, and
that the rebalancing of public-use bicycles discouraged
additional motor vehicle use in London, UK. However,
rebalancing operations may threaten the positive environ-
mental impacts of bike sharing given that these operations
are performed by fossil-fuel-based vehicles (Wiersma,
2010). Except for Shui and Szeto (2018) and Wang and
Szeto (2018), only few studies have focused on the
environmental impacts of the rebalancing operations of
bike sharing.
Shui and Szeto (2018) proposed a new dynamic BRP,

used a small amount of generated data, and solved the
model based on numerical analysis instead of using real
BSS order data. Moreover, the authors merely focused on
the change of weight between unmet demand and CO2

emissions and provided neither a unified objective function
nor optimal results. Wang and Szeto (2018) addressed the
static rebalancing problem, argued that all broken shared
bikes should be moved back to the depot, and minimized
the CO2 emissions from all rebalancing vehicles. However,
similar to Shui and Szeto (2018), they did not use real BSS
data. Moreover, the emission reduction space may be very
limited for meeting all demands, and Wang and Szeto
(2018) seemed unaware that part of the demands can be
sacrificed in exchange for further emission reductions.

2.2 Static and dynamic bike rebalancing

Rebalancing can be divided into static and dynamic
rebalancing. Static rebalancing is usually performed at
night to meet the needs of stations for the following day.
During the rebalancing, the inventory and demand of
stations are fixed (Forma et al., 2015). By contrast,
dynamic rebalancing is usually performed at daytime when
the BSS has high usage and while station requirements are
changing in real time (Legros, 2019). Both types of
rebalancing have been used by operators in practice.
However, previous studies have mostly focused on static
rebalancing (Ho and Szeto, 2014). In addition, compared
with dynamic rebalancing, static rebalancing has more
flexibility, effectively avoids traffic congestion at night
(especially in huge cities such as Beijing), and produces
less environmental pollution. To fill this research gap, we
consider static BRP as our optimization background.

The rebalancing of BSS is usually performed by fossil-
fueled vehicles. Previous studies have used different fuel
consumption or CO2 emission models to measure the
environmental impact of vehicle routing problems. In most
of these models, the measurable factors of fuel consump-
tion or CO2 emission include vehicle speed, acceleration,
gradient, load, and fuel (Scott et al., 2010; Hosseini-Nasab
and Lotfalian, 2017). Given that static rebalancing is
usually performed by homogeneous vehicles at night, the
usage of BSS and congestion effects can be omitted, and
the speed of rebalancing vehicle can be treated as a
constant (Wang and Szeto, 2018). Therefore, we assume
that CO2 emissions are related to both the load and the
travel distance of the vehicle carrying the load.

2.3 Mathematical models of BRP

In the existing research, the assumptions of the BRP model
mainly include the number of vehicles and whether a
station can be visited by one vehicle (Cruz et al., 2017) or
multiple vehicles (Szeto et al., 2016), as well as assuming
each station can be visited only once (Ho and Szeto, 2014)
or multiple times (Bulhões et al., 2018; Liu et al., 2018). In
addition, the existing models often assume that vehicles
depart from and return to a depot (Raviv et al., 2013), and
most studies also assume that a BSS has fixed stations
(Chemla et al., 2013); these assumptions are not applicable
to a real dockless BSS operated by an enterprise (Ai et al.,
2019) where users can park their bikes in any prescribed
area at will.
The objectives of the BRP model usually depend on the

focus of the operator. The government-operated public
bike system aims to maximize social benefits and meet the
needs of users (Contardo et al., 2012), whereas the BSS
operated by enterprises often aims toward the shortest
travel distance (Benchimol et al., 2011) and minimized
operating costs (Erdoğan et al., 2014). While the environ-
mental impacts of BSSs have received increasing attention,
only few studies have treated BRP with environmental
impacts as their objective. Low carbon research can
contribute to the sustainable development of BSS and
reduce traffic carbon emissions.

2.4 Algorithms for solving BRP models

Accurate solving algorithms are almost impossible to be
used as a solution for large-scale BRP, and the associated
costs are unacceptable for operators. Therefore, some
heuristics or approximation algorithms have been pro-
posed to solve BRP, such as the genetic algorithm (Liu and
Pan, 2019), branch-and-cut (Chemla et al., 2013), and
neighborhood search (Rainer-Harbach et al., 2013). The
tabu search algorithm has a fast convergence speed and is
considered very effective in solving routing problems. In
recent years, some scholars have proposed an improved
tabu search algorithm to solve static BRP. Szeto et al.
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(2016) proposed an iterative tabu search heuristic algo-
rithm to minimize the punishment for unmet needs. Lü
et al. (2019) designed a two-layer tabu search algorithm to
solve static BRP based on the supply and demand
relationship. However, these studies ignored the environ-
mental impacts of BRP, thereby preventing us from using
their algorithms in this study.

3 Data

We use real BSS order data from Mobike, formerly one of
the largest bike-sharing service providers in China based in
Beijing. Mobike accounted for 56.56% of China’s bike-
sharing market in 2017 and received approximately 20
million orders per day (Sohu Finanial, 2017). We use the
desensitized order data (excluding the private information
of users) of Mobike for the dates from May 10 to May 16,
2017, which amounts to more than 1.82 million orders and
435492 bikes. Each order contains elementary trip
information, including order ID, user ID, bike ID, bike
type (as of May 2017, Mobike had produced two types of
bike-sharing modes, namely, type 1, the classic mode, and
type 2, the light ride mode), start time, and the longitude
and latitude of order start and end positions, respectively.
Table 1 presents a few representative data samples
consisting of several orders placed within May 10 to 16,
2017.

3.1 Trip distance estimation

The transportation map of Beijing has a ring-shaped spatial
distribution covering eight existing and planned ring roads
and radial expressways extending in all directions. Given
that urban roads in Beijing usually start from south to north
or from west to east, we use the Manhattan distance to
calculate the distance between the start and end positions
of each order (Ma, 2020).
The Manhattan distance between two points (xi, yi) and

(xj, yj), also known as taxi distance, is computed as the
distance in the north–south direction plus the distance in
the east–west direction, that is, dði, jÞ ¼ jxi – xjj þ jyi – yjj.
We calculate the Manhattan distance between two points

based on their longitude and latitude as follows:

Si ¼ LBSðOxi, Oyi, Oxi, DyiÞ
þ LBSðOxi, Dyi, Dxi, DyiÞ, (1)

where Si represents the Manhattan distance of order i, Oxi
and Oyi denote the longitude and latitude of the start
position of order i, respectively, and Dxi and Dyi denote the
longitude and latitude of the end position of order i,
respectively. In line with the Haversine formula (Cho and
Baik, 2018), the LBS function calculates the spherical
surface distance based on the longitude and latitude of two
spherical points. According to the definition of Manhattan
distance, we assume an auxiliary point ðOxi, DyiÞ. In this
case, the Manhattan distance between points ðOxi, OyiÞ and
ðDxi, DyiÞ is equal to the spherical distance from ðOxi, OyiÞ
to ðOxi, DyiÞ plus that from ðOxi, DyiÞ to ðDxi, DyiÞ.

3.2 Descriptive analysis of data

Figure 1 shows the temporal distributions of bike trip start
time. First, shared bike trips in Beijing achieves peak value
during 7–8 AM and 5–6 PM on weekdays, which
corresponds to the rush hour in the city. This finding is
consistent with the purpose of BSS to solve the “last
kilometer” problem during commuting times. Second, a
small peak can be observed at 12 PM on weekdays, which
can be attributed to the fact that some riders use the bikes to
have lunch in a nearby place. Third, the temporal
distribution of bike trips in the morning is more
concentrated than that in the evening, which may be
ascribed to the fact that work in China usually starts at 8–9
AM, whereas the work end time is highly flexible. Fourth,
the temporal distribution of trips on weekends obviously
differs from that on weekdays. Specifically, no obvious
peak is observed on weekends, and the distribution of
morning trips is lowest during daytime. However, a small
increase can be observed in the evening, which may be
related to trips for leisure and entertainment.
Figure 2 maps the spatial distribution of the bike orders

in Beijing. The heat map clearly shows that some central
urban areas have a high density of bike start and end

Table 1 Sample of orders from Mobike placed within May 10 to 16, 2017 in Beijing

Order ID User ID Bike ID Bike type Start time Start latitude Start longitude End latitude End longitude

0 1005529 0 1 2017/5/10 14:04 39.8240 116.4743 39.8172 116.4743

2833442 939196 298367 2 2017/5/11 20:04 40.0231 116.2930 40.0259 116.2917

2161119 248301 235713 2 2017/5/12 09:56 39.8652 116.3919 39.8611 116.3960

4691685 431305 468195 1 2017/5/13 18:59 39.9243 116.1968 39.9229 116.1955

4340598 384901 440264 1 2017/5/14 16:28 39.8762 116.4949 39.8817 116.4922

1889563 613163 210200 2 2017/5/15 07:57 39.9037 116.5402 39.9147 116.5375

5216585 444684 516151 1 2017/5/16 18:04 39.8556 116.3081 39.8666 116.3068
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positions, especially the districts of Dongcheng, Xicheng,
Shijingshan, Haidian, Chaoyang, and Fengtai. Moreover,
the density distribution of shared bike trips is related to the
traffic roads in Beijing (Fig. 2).
In general, while the demand for the start and end

positions of bikes is balanced across districts, some
differences in performance can be observed. Specifically,
most trips take place in central districts, such as Chaoyang,
Fengtai, Haidian, Dongcheng, and Xicheng, and most start
and end positions of each trip are located in the same
district (Fig. 3). At the end of the day, only a slight
fluctuation can be observed in the number of bicycles in
each district, with the total increase or decrease amounting
to only 0.5% (Table 2). Therefore, the BRP in Beijing can
be solved within each district without rebalancing between
districts to reduce the problem scale. We then solve the
BRP of each district in the following sections.

4 Mathematical formulation and solving
algorithm

We first evaluate the CO2 emissions of the current
rebalancing scheme and use the clustering algorithm to
locate the parking nodes. Second, we propose a partition
strategy based on the rebalanced supply and demand
relationship of bikes to prevent the number of bicycles in
each partition from exceeding the vehicle capacity (Q), to
avoid deciding the number of bikes being loaded or
unloaded at each node, and to reduce the scale of the NP-
hard problem simultaneously. Third, we improve the
existing rebalancing model. Fourth, we apply this model
to each partition to connect these partitions. Fifth, we
summarize the algorithm.

4.1 CO2 emissions in rebalancing before optimization

4.1.1 Acquisition of rebalancing data

Given that the BSS rebalancing data cannot be obtained
directly (GPS is not used for tracking in the rebalancing),
we obtain our rebalancing data by processing order data. If
the end position of the previous order for a bike with the
same ID differs from the start position of the next order,
then a rebalancing is very likely to have occurred.
Therefore, we initially categorize each order by bike ID
and sort these orders based on trip start time (Table 3). The
start position of the rebalancing data is treated as the end
position of the previous order, whereas the rebalancing end
position is treated as the start position of the next order, for
the bike with the same ID (Table 4). Given that some
orders do not have previous order data, they all have
missing rebalancing position information (shown as NA in

Fig. 1 Temporal distributions of bike-sharing trips according to trip start time.

Fig. 2 Spatial distributions of bike-sharing trips.
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Table 4) and are therefore excluded from the rebalancing
operation. Then, data with the start time within 5/10/2017
and 5/16/2017 are selected for the CO2 emission assess-
ment of the rebalancing. Furthermore, we assume that
those bikes with a rebalancing distance of less than 200 m
were moved manually instead of by vehicles.

4.1.2 Obtaining parking nodes and the current rebalancing
route and estimating CO2 emission

Given the lack of actual rebalancing data, we cannot obtain
rebalancing information (e.g., which bikes are loaded by
the same vehicle and the route of the vehicle). However,

Fig. 3 Movement patterns of bike-sharing trips between and within districts in Beijing (the height of each column indicates the number
of trips in each district).

Table 2 Number of movements of bike-sharing trips between and within districts in Beijing

Origin Destination

Chaoyang Haidian Fengtai Xicheng Daxing Dongcheng Tongzhou Shijingshan Changping Fangshan Shunyi Mentougou Total

Chaoyang 77382 351 1093 193 184 1659 262 246 48 81418

Haidian 340 41434 359 1856 31 579 256 44855

Fengtai 1014 410 39223 665 818 701 1 133 38 43003

Xicheng 182 1812 659 18304 748 1 21706

Daxing 164 2 1007 14054 6 581 15814

Dongcheng 1672 1 860 630 10262 1 13426

Tongzhou 303 385 12695 3 13386

Shijingshan 559 168 2 10500 158 11387

Changping 225 396 10205 4 10830

Fangshan 34 1 2652 2687

Shunyi 33 4 2 2552 2591

Mentougou 165 1220 1385

Total 81315 44965 43403 21650 15442 13407 13543 11377 10711 2690 2607 1378 262488

Deviation 103 110 400 56 372 19 157 10 119 3 16 7 1372

Rate 0.1% 0.2% 0.9% 0.3% 2.4% 0.1% 1.2% 0.1% 1.1% 0.1% 0.6% 0.5% 0.5%
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the closer the start and end positions of rebalancing, the
more likely they are to be rebalanced by the same vehicle.
Given that dockless BSS has no stations unlike in station-
based BSS, we use the clustering algorithm and take the
start position, end position, and direction from our
rebalancing data as feature vectors given that the vehicles
are fully loaded in the rebalancing. We determine the
clustering number n based on rebalancing quantity and
vehicle capacity (n = Num/Q) and treat this number as a
parameter in the clustering algorithm. Afterward, we
calculate the geometric center (X, Y) of each class
according to the rebalancing start/end positions to identify
the start/end parking node of the rebalancing route.

x ¼
X

i2C
cosðlatiÞ � cosðlngiÞ

n
, (2-1)

y ¼
X

i2C
cosðlatiÞ � sinðlngiÞ

n
, (2-2)

z ¼
X

i2C
sinðlatiÞ
n

, (2-3)

Lng ¼ atan2ðy, xÞ, (2-4)

hyp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
, (2-5)

Lat ¼ atan2ðz, hypÞ, (2-6)

ðX , Y Þ ¼ Lat � 180

π
, Lng � 180

π

� �
, (2-7)

where C is the rebalancing data belonging to a class, lati
and lngi denote the latitude and longitude of parking node
i, respectively, and atan2ð⋅Þ is a function that returns the
arctangent value by giving x and y coordinate values.
We assume that homogenous vehicles are used in all

rebalancing in Beijing and that these vehicles have a
standard capacity of loading 50 bikes. We calculate the
CO2 emissions of a vehicle as

Table 3 Orders categorized by bike ID and sorted by trip start time

Order ID User ID Bike ID Bike type Start time Start latitude Start longitude End latitude End longitude

0 1005529 0 1 2017/5/10 14:04 39.8241 116.4743 39.8172 116.4743

1 414155 0 1 2017/5/14 10:36 39.8309 116.4798 39.8296 116.4825

2 493113 0 1 2017/5/14 18:51 39.8282 116.4825 39.8364 116.4757

3 714648 0 1 2017/5/18 8:17 39.8433 116.4716 39.8364 116.4729

4 903631 0 1 2017/5/24 11:55 39.7993 116.5059 39.7966 116.5073

7 18709 1 1 2017/5/10 12:24 39.9065 116.2477 39.9023 116.2518

8 535422 1 1 2017/5/12 8:21 39.8776 116.2477 39.8680 116.2463

9 730749 1 1 2017/5/12 12:44 39.8680 116.2463 39.8708 116.2422

10 347604 1 1 2017/5/14 18:12 39.8488 116.2299 39.8447 116.2326

11 205928 1 1 2017/5/15 7:49 39.8474 116.2340 39.8515 116.2285

Table 4 Start and end positions of the rebalancing data

Order ID User ID Bike ID Bike type Start time Rebalancing start
latitude

Rebalancing start
longitude

Rebalancing end
latitude

Rebalancing end
longitude

0 1005529 0 1 2017/5/10 14:04 NA NA NA NA

1 414155 0 1 2017/5/14 10:36 39.8172 116.4743 39.8309 116.4798

2 493113 0 1 2017/5/14 18:51 39.8296 116.4825 39.8282 116.4825

3 714648 0 1 2017/5/18 8:17 39.8364 116.4757 39.8433 116.4716

4 903631 0 1 2017/5/24 11:55 39.8364 116.4729 39.7993 116.5059

7 18709 1 1 2017/5/10 12:24 NA NA NA NA

8 535422 1 1 2017/5/12 8:21 39.9023 116.2518 39.8776 116.2477

9 730749 1 1 2017/5/12 12:44 39.8680 116.2463 39.8680 116.2463

10 347604 1 1 2017/5/14 18:12 39.8708 116.2422 39.8488 116.2299

11 205928 1 1 2017/5/15 7:49 39.8447 116.2326 39.8474 116.2340
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E ¼ F*� dij þ F � dji# , (3)

where E is the total CO2 emissions of the current
rebalancing, F* and F represent the CO2 emission factor
of a fully loaded vehicle and an unloaded vehicle,
respectively, dij represents the distance between the vehicle
loading bikes at parking node i and unloading bikes at
parking node j, and dji# represents the distance between the
vehicle unloading bikes at parking node j and loading bikes
at the next parking node i#. For the selection from j to i#,
we apply the greedy algorithm to select the loading node
closest to j.

4.2 Partitioning strategy based on the supply and demand of
parking nodes

The rebalancing model of dockless BSS is similar to that of
station-based BSS, and the greatest difficulty lies in the
number of bikes being picked up and dropped off at
parking nodes. We avoid deciding the number of bikes
being picked up or dropped off at these nodes and reduce
the scale of the NP-hard problem by applying a
partitioning strategy based on the supply and demand of
the rebalancing. After partitioning, the number of bicycles
being picked up or dropped off in each partition does not
exceed the capacity of rebalanced vehicles. Therefore,
deciding the number of bicycles being picked up or
dropped off in each node is unnecessary; instead, we only
need to decide whether to visit the node and the order of
visiting. Theoretically, the target bike number at each node
is achieved via internal rebalancing in each partition
without the intervention of the other partitions. We
therefore divide a large BRP into several small BRPs
that can be completed by a vehicle, thereby greatly
reducing the complexity of the problem.
The partitioning strategy steps are as follows.
(i) The number of bicycles at each parking node (pi)

differs from the target demand (qi). According to the
supply and demand relationship, we classify parking nodes
into the following (Fig. 4(a)):
pi < qi, parking nodes that need to be supplied with

shared bikes (Sd);
pi > qi, parking nodes that need to remove shared bikes

(Sp);
pi ¼ qi, parking nodes that do not need to be visited

given that their bike supply and demand are balanced (Sb).
(ii) We adjust the parking nodes according to the

rebalancing demand. For the node with more than 50
bicycles in demand or supply, we dividing this node into
two or more nodes with the same coordinates and different
labels, lest it cannot be entirely loaded.
(iii) We determine the start node by using the greedy

algorithm, and we generate two chains for the partitioning
in step (i). We select the start node successively for all
nodes in collections Sd and Sp. We use the greedy

algorithm based on distance to solve the TSP problem,
and we select the path solution with the minimum distance
as our initial solution. This step generates two chains Xd
and Xp (Fig. 4(b)).
(iv) To ensure that the number of bicycles to be loaded

and unloaded in each partition does not exceed the vehicle
capacity (Q), we segment the chain Xd (Xp) obtained in
step (iii). We start from the first node (S1) of each chain and
calculate the sum (T) of the demand (supply) quantity of
visiting the nodes in sequence. When visiting a node to
find that the demand (supply) quantity exceeds the vehicle
capacity (Q), that is, T >Q, we cut off Xd (Xp) and
initialize T to 0. Afterward, we continue visiting the next
node until Xd (Xp) is split into a series of sub-chains Xdi

(Xpi) that are approximately Q in demand (supply) quantity
(Figs. 4(c) and 4(d)).
(v) We adjust the number of sub-chains when the

numbers of sub-chains in the supply and demand sides are
unbalanced. We select the sub-chain with the most supply
or demand quantity from the side with less sub-chains,
divide this sub-chain into two sub-chains, and repeat the
above operation until the numbers of sub-chains in the two
sides are the same.
(vi) We identify the location of each sub-chain and

calculate the geometry center coordinate Xdic (Xpic) for
each sub-chain according to Eqs. (2-1)–(2-7).
(vii) We match the supply and demand sub-chains,

obtain the partitions, and then determine the location of
each partition. We use the geometric center coordinate Xdic
(Xpic) to represent the position of sub-chain Xdi (Xpi)
(Fig. 4(e)) and then match the supply and demand
partitions one by one. Each Xdic selects the nearest Xpic

for matching, and the obtained geometric coordinates are
Xdic þ Xpjc ¼ Xdpic, that is, Xdi þ Xpj ¼ Xdpi (Fig. 4(f)).
In this way, the parking nodes set of each partition

generated only needs to be rebalanced by one vehicle, and
we do not need to decide the number of bikes being loaded
and unloaded. We assume that the vehicle does not carry
bikes into a partition and that no bikes are left in the vehicle
after the rebalancing of a partition. Therefore, the rest of
the bikes on the vehicle will be unloaded at the last node of
a partition, which would allow us to use the same
rebalancing model for all partitions.

4.3 Mathematical method

Following Ho and Szeto (2014), we propose a modified
formulation to solve BRP. Ho and Szeto (2014) studied the
static rebalancing problem of a station-based BSS with a
depot as a selective pick-up and drop-off problem and
explicitly defined their pick-up and drop-off stations. Their
model assumes that the depot is both a pick-up and drop-
off node and has sufficient bikes and capacity and that all
stations can only be visited once at most. The objective
function is to minimize the sum of difference between the
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number of bikes after rebalancing and the target number at
each station.
We modified the formulation of Ho and Szeto (2014) as

follows. First, the model no longer establishes constraints
on vehicle capacity. By applying the partitioning strategy
in Section 4.2, the quantity of bikes to be loaded or
unloaded in each partition does not exceed the capacity of
one vehicle. Therefore, the model only needs to decide
whether to visit the parking node. If so, the vehicle can
load the remaining bicycles. Second, in the model, we do
not establish constraints for pick-up and drop-off parking
nodes because after partitioning, the problem has been
greatly simplified, and we only have few cases where two
nodes need to be considered separately. Third, although
each node in our model can only be visited once at most,
the partition strategy applied in step (ii) divides the parking
nodes with an excessive demand or supply into several
nodes with the same location, thereby making our model
equivalent to a multi-visit model. Fourth, we consider a
vehicle and a BSS without a depot. Vehicles are usually
private and do not need to start from or return to the depot

when the rebalancing is finished, thereby avoiding the
calculation of the impact of some ineffective rebalancing
from the depot to parking nodes (Luo et al., 2020).
Although we use a single vehicle model to connect all
parts, this model can be easily transformed into a multi-
vehicle model, where a vehicle completes only one or
several partitions. Fifth, the objective function is to
minimize the cost of CO2 emission and the losses caused
by unmet demand. In other words, we achieve a trade-off
between the environmental impact of the rebalancing and
the satisfaction of user demand. Given that the goal of
rebalancing is to “restore something back to its original
state”, the target number of bikes at each parking node (qi)
is equal to the initial bike quantity at the beginning of the
day. The rebalancing demand (i.e., number of bikes that
need to be picked up from or dropped off at nodes) is
defined as the difference between the number at the end of
a day (pi) and the target number (qi). Finally, we assume
that the CO2 emissions are related to both the load and the
travel distance of the vehicle carrying the load. Table 5
provides the definition of the notations involved in the

Fig. 4 Partitioning strategy based on the supply and demand of parking nodes.
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rebalancing optimization model.

min
Xn
i¼1

Xm
j¼1

pc � F þ yij �
F* –F

Q

� �
� dij � xij

þ po � T �
Xn
i¼1

jSi – qij
2

(4)

s:t: Si ¼ pi – yi,  8i 2 N , (4-1)

Xn

j¼1 and j≠i
xji ¼

Xn

j¼1 and j≠i
xij,  8i 2 N , (4-2)

Xn

j¼1 and j≠i
xij£1,  8i, j 2 N , (4-3)

yi ¼
minðqi – pi, yjiÞ, if pi – qi < 0

pi – qi, if pi – qi >0
,

(
(4-4)

yi ¼
Xn

j¼1 and j≠i
yij –

Xn

j¼1 and j≠i
yji,  8i, j 2 N , (4-5)

Xn

i¼1
yi ¼ 0,  8i 2 N , (4-6)

aj³ai þ 1 –Mð1 – xijÞ,  8i, j 2 N ,  i≠j, (4-7)

xij 2 f0, 1g,  8i 2 N , (4-8)

yi³0,  8i 2 N , (4-9)

yij³0,  8i 2 N , (4-10)

Si³0,  8i 2 N , (4-11)

ai³0,  8i 2 N : (4-12)

The objective function of mathematical model (4) is to
minimize the cost of CO2 emission and the losses caused
by unmet demand. Constraint (4-1) defines the number of
bikes owned by each parking node after rebalancing.
Constraint (4-2) ensures that vehicles leave after visiting a
node. Constraint (4-3) ensures that a location can only be
visited once at most in the rebalancing. Constraint (4-4)
ensures that the number of bikes loaded at a node is equal
to the number of redundant bicycles at the node because
after applying the partitioning strategy, the number of bikes
supplied in each partition does not exceed the capacity of a
vehicle; while the number of unloaded bicycles at the node
is equal to the smaller value of the number of bicycles
required at the node and the number of bicycles carried by
a vehicle. Therefore, the visiting order of the parking nodes
will determine how many requirements can be met.
Constraint (4-5) states that the number of bikes being
picked up from or dropped off at a node is equal to the
difference between the number of bikes on the vehicle
before and after visiting the node. Constraint (4-6) ensures
that all picked up bikes are dropped off. Constraint (4-7)
eliminates sub-tours. Constraint (4-8) defines xij as a binary
variable. Constraints (4-9) to (4-11) restrict the quantity of
bikes being picked up and dropped off, the number of
bikes on a vehicle, and the number of bikes in a station
after rebalancing to nonnegative integers. Constraint
(4-12) ensures that the auxiliary variable is nonnegative.

Table 5 Notations in the rebalancing optimization model

Decision variables xij xij = 1, if the vehicle travels directly from node i to node j; otherwise, xij = 0

Parameters N Set of nodes

yi Number of bikes dropped off or picked up at node i, pick up if yi> 0, drop off if yi< 0

dij Distance between node i and node j, Manhattan distance used here

pi Number of bikes at node i before vehicle arrives

Si Number of bikes at node i after vehicle leaves

qi Target number of bikes at node i, which equals to the number of bikes before rebalancing operation plus one day’s net flow

yij Number of bikes carried on vehicle when it goes from node i to node j directly, yij = 0 if xij = 0

M A very large number

ai Auxiliary variable associated with node i used for the sub-tour elimination constraints

T Daily turnover rate of bike

pc, po CO2 emission cost as 51.38 yuan/ton and pricing of a bike riding as 1.0 yuan, respectively

F CO2 emission factor of unloaded vehicle as 0.77256 kg/km

F* CO2 emission factor of fully loaded vehicle as 1.10179 kg/km

Q Vehicle capacity

Notes: pc is from China carbon trading network in 2017, po is disclosed on Internet in 2017, and F* is from Wang and Szeto (2018).
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4.4 Connecting partitions

We apply our model to the BRP of each partition and use
the tabu search algorithm to solve the problem (Figs. 5(a)
to 5(c)). Connecting the tail and head of the partition in
turn is treated as a shortest path problem. Given that the
number of partitions for a district is not too large, we use a
simple and fast greedy algorithm to connect the end
parking node Sei and the start parking node Ssj between
different collections (Fig. 5(d)).

4.5 Overall algorithm flow

The improved rebalancing algorithm based on the
proposed partitioning strategy involves the following
steps:
Step 1: A clustering algorithm is used to obtain the

parking nodes;
Step 2: Using the partitioning strategy, the large-scale

BRP that needs to determine the quantity of bikes to be
loaded or unloaded at each node is transformed into several
problems to avoid deciding the quantity of loading and
unloading;
Step 3: The rebalancing model in Section 4.3 is

established for each partition;
Step 4: The tabu algorithm is used to obtain the optimal

solution of the model in Step 3;
Step 5: The greedy algorithm is used to connect the

ends and heads of the partitions in turn;
Step 6: The algorithm terminates.

5 Results

We apply our proposed model on the BSS operating in
Beijing. Afterward, we illustrate the optimization effect of
the algorithm from three aspects.

5.1 Optimize the number of parking nodes visited by
vehicles and the driving routes

Table 6 shows the difference in the number of parking
nodes visited by vehicles before and after optimization in

Fig. 5 Tabu search based on partitioning strategy.

Table 6 Number of parking nodes visited by vehicles before and after

optimization

District Before optimization After optimization Balanced

Chaoyang 434 426 8

Haidian 244 241 3

Fengtai 248 245 3

Xicheng 118 117 1

Daxing 90 84 6

Dongcheng 72 72 0

Tongzhou 80 69 11

Shijingshan 66 65 1

Changping 60 55 5

Fangshan 16 14 2

Shunyi 16 14 2

Mentougou 10 10 0
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the rebalancing scheduled on Thursday, May 11, 2017. In
the current rebalancing, the order data for the day were not
fully utilized to judge whether the nodes had been
balanced. Therefore, the vehicle visited all the nodes,
including those with balanced supply and demand. On the
basis of the number of departures and arrivals at each node
as obtained from the order, in the optimized rebalancing,
the vehicle skipped the balanced nodes, and the number of
nodes involved in the rebalancing problem was reduced.
This process is critical in optimizing the results, especially
in areas where only few bikes are placed and where the
rebalancing route is simple.
Figure 6 shows the distribution of parking nodes and the

vehicle routes before (left) and after (right) optimization on
May 11 (only Haidian, Tongzhou, Mentougou, and
Shijingshan are listed here). Some peripheral districts of
Beijing have few bicycles and parking nodes with very
scattered distribution, thereby making the vehicle route
rebalancing relatively simple and limiting the space for
optimizing the repeated parts of the route. Moreover, a
large number of nodes with balanced supply and demand
can be found around these districts, such as in Tongzhou,
Daxing, Changping, Fangshan, and Shunyi, probably
because these districts are located outside the 5th Ring
Road of Beijing, situated far away from the urban area, and
are not the residence and work places of the main bike-
sharing users. Given that a few or fixed number of users
can be found in these districts, the number of bicycles at
each node returns to the initial quantity at the end of the
day. In these districts, one should judge whether the nodes
are balanced in advance.
Table 7 shows the driving distance of vehicles in each

district within one week before and after optimization. The
driving distances of vehicles in Chaoyang, Haidian,
Shunyi, and Dongcheng have been significantly reduced
by more than 48%.
Due to the lack of planning for the current rebalancing,

most drivers choose the next parking node based on their
experience, thereby resulting in repeated and messy
driving routes, especially in districts with a large number
of bikes and parking nodes, such as Haidian (Fig. 6). The
sample of orders used in this study consists of 197856
bikes on May 11, among which Chaoyang, Haidian, and
Fengtai have 59240, 32853, and 32507 bikes, respectively,
accounting for 63.0% of all bikes (Fig. 7). These districts
are located in the center of Beijing with many adminis-
trative, commercial, and residential areas, where people
tend to use bikes to move around, and where nodes are
highly concentrated. Given that the demand of each
parking node is extremely unbalanced, at the end of the
day, the proportion of nodes with a balanced supply and
demand is very small. Therefore, for these districts,
optimizing the repeated part of the route is critical.
Among them, the distance in Chaoyang and Haidian has
been reduced by more than 50% (Table 7). Fengtai has a
lower route optimization rate, but its number of parking

nodes is higher than that of Haidian because the former is
located south-west of Beijing where only few residential
and administrative places are located, where roads are
relatively simple, and where traffic congestion is low.
Therefore, the current vehicle route in Fengtai during the
rebalancing is not as complex as that in Haidian.
We observe a different case in Shijingshan and

Mentougou. These two districts have s imilar characteris-
tics with Tongzhou and Changping, such as remote
location, few parking nodes, and scattered distribution,
but only few of the nodes in these two districts have a
balanced supply and demand at the end of the day, thereby
significantly reducing the effect of route optimization
(41.9% and 35.1% for Shijingshan and Mentougou,
respectively). According to Fig. 7, the bicycle turnover
rate of Shijingshan, Mentougou, and Fangshan is higher
than that of the other similar districts. Therefore, the
reduced optimization effect may be ascribed to the small
number of bicycles in these districts, which does not meet
the demand at some periods of the day and prevents some
remote nodes from achieving balance. These areas also
have simple vehicle route and limited optimization space
for the repeated part of the route.

5.2 Optimize the CO2 emissions generated in the
rebalancing process

Table 8 compares the CO2 emitted by the vehicles during
rebalancing before and after optimization. The CO2

emissions during rebalancing within a week decreased by
57.5% after optimization. The optimization rate of CO2

emissions demonstrates a greater decrease compared with
that of vehicle driving distance because the current
rebalancing loads and unloads bikes according to manual
experience. The vehicles are almost fully loaded at each
supply parking node, which further increases their CO2

emissions while driving, especially in Fangshan, Shunyi,
and Mentougou.
In terms of time, the CO2 emissions from rebalancing on

weekends (May 13 and 14) were significantly lower than
those on weekdays, during which the average emission
was 5087.27 kg, with an average emission reduction rate
of 56.2%. The lowest emission was 4990.92 kg CO2

recorded on Saturday (May 13), with an emission
reduction rate of 55.2%. The average emission on week-
days was 5827.42 kg, with an average reduction rate of
58.0%. The highest emission and emission reduction rate
were 6115.04 kg and 59.1%, respectively, both recorded
on Monday (May 15).
In terms of district, the distribution of CO2 emissions

within a week before and after the optimization is generally
consistent, but a huge gap in emissions can be observed
across districts (Fig. 8). The districts are then divided into
three groups according to their emission quantity during
rebalancing. The first group includes the high emission
areas of Chaoyang, Haidian, and Fengtai, the second group
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includes the medium emission areas of Daxing, Tongzhou,
Xicheng, Changping, and Dongcheng, and the third group
includes the low emission areas of Fangshan, Shunyi, and
Mentougou.
The high emission areas are located between the 2nd and

4th Ring Roads of Beijing, covering a wide area with a
huge supply and demand of sharing bikes. Among them,
Chaoyang and Haidian have large numbers of adminis-
trative and residential areas. The average daily CO2

emission in these districts was 1191.00 kg, and the average
daily emission reduction rate is 56.9%. The highest
average daily emissions and emission reduction rate were
observed in Chaoyang (1915.06 kg and 65.0%, respec-
tively).
The medium emission areas have an average daily CO2

emission of 325.31 kg and average daily emission
reduction rate of 54.1%. Some obvious emission reduction
effects can be observed. Changping, Daxing, and
Tongzhou are all located outside the 4th Ring Road of
Beijing, situated far away from the city center, and are not
the main areas for BSS, but due to their large geographical

area (Table 9), the CO2 emissions in these areas cannot be
underestimated. On the contrary, although Xicheng and
Dongcheng are located in the heart of Beijing and the BSS
is widely utilized, they only have small areas, thereby
resulting in lower vehicle emissions.
The low emission areas have an average daily CO2

emission of 104.10 kg and average daily emission
reduction rate of 50.7%. A very small number of parking
nodes is clustered in these areas. With a significantly low
number of bicycles that need to be rebalanced, these areas
have limited space for reducing CO2 emissions via route
optimization. For instance, Mentougou only has 10
parking nodes and does not have a balanced parking
node at the end of the day. Therefore, vehicle load (number
of bikes carried by a vehicle) has a critical role in reducing
CO2 emissions in these areas.

5.3 Optimizing unmet demand and the economic costs of
rebalancing

Tables 10 shows the number of bikes in each district where

Fig. 6 Vehicle routes before and after optimization.
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rebalancing demands are met before and after optimiza-
tion. After optimization, the effect of the restoration degree
of the BSS has been significantly improved, and the met
rate of the bike demand in the parking nodes could increase

from the current 63.7% to 86.6%. In the current
rebalancing, the parking nodes in Shunyi, Fangshan, and
Mentougou have higher bike recovery rates. Given a very
small number of bicycles that need to be rebalanced, the

Table 7 Comparison of vehicle driving distance in the rebalancing before and after optimization (km)

District 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Total

Chaoyang Before optimization 2025.95 1987.38 1980.73 1779.54 1824.12 2147.60 2111.17 13856.48

After optimization 793.48 742.11 847.40 735.74 736.49 864.37 772.77 5492.38

Rate 60.8% 62.7% 57.2% 58.7% 59.6% 59.8% 63.4% 60.4%

Haidian Before optimization 933.11 903.17 959.64 825.63 886.54 988.14 961.58 6457.81

After optimization 472.34 486.76 495.52 440.03 408.12 437.66 469.61 3210.04

Rate 49.4% 46.1% 48.4% 46.7% 54.0% 55.7% 51.2% 50.3%

Fengtai Before optimization 701.36 717.76 886.37 734.74 759.69 863.76 893.06 5556.75

After optimization 400.58 447.33 467.36 403.03 421.94 507.81 511.71 3159.76

Rate 42.9% 37.7% 47.3% 45.1% 44.5% 41.2% 42.7% 43.1%

Xicheng Before optimization 295.92 314.26 307.68 249.05 254.71 325.63 301.01 2048.26

After optimization 166.07 177.39 176.17 126.67 142.94 175.82 176.27 1141.34

Rate 43.9% 43.6% 42.7% 49.1% 43.9% 46.0% 41.4% 44.3%

Daxing Before optimization 540.16 507.26 518.99 445.13 462.66 598.87 569.45 3642.52

After optimization 282.73 284.79 272.25 281.60 228.47 264.50 287.66 1902.00

Rate 47.7% 43.9% 47.5% 36.7% 50.6% 55.8% 49.5% 47.8%

Dongcheng Before optimization 196.54 183.53 186.22 161.98 168.39 210.91 182.25 1289.83

After optimization 99.91 82.17 99.74 87.01 97.49 94.43 100.84 661.59

Rate 49.2% 55.2% 46.4% 46.3% 42.1% 55.2% 44.7% 48.7%

Tongzhou Before optimization 433.14 442.20 438.33 411.49 416.14 436.63 464.14 3042.07

After optimization 237.21 212.18 233.02 242.03 244.75 251.34 255.03 1675.56

Rate 45.2% 52.0% 46.8% 41.2% 41.2% 42.4% 45.1% 44.9%

Shijingshan Before optimization 157.30 176.92 152.61 145.00 143.38 173.67 168.21 1117.10

After optimization 106.98 96.61 94.23 75.44 81.84 89.22 104.34 648.66

Rate 32.0% 45.4% 38.3% 48.0% 42.9% 48.6% 38.0% 41.9%

Changping Before optimization 269.85 276.70 294.54 237.20 222.56 266.64 284.58 1852.08

After optimization 131.94 145.16 155.96 107.05 159.71 152.71 133.24 985.77

Rate 51.1% 47.5% 47.1% 54.9% 28.2% 42.7% 53.2% 46.8%

Fangshan Before optimization 112.36 130.30 106.50 94.27 100.92 128.43 117.96 790.74

After optimization 59.69 68.13 54.14 50.80 69.33 62.59 58.88 423.56

Rate 46.9% 47.7% 49.2% 46.1% 31.3% 51.3% 50.1% 46.4%

Shunyi Before optimization 126.11 159.63 150.87 120.87 113.31 154.35 164.17 989.31

After optimization 83.52 65.90 79.08 83.02 60.21 63.66 71.32 506.70

Rate 33.8% 58.7% 47.6% 31.3% 46.9% 58.8% 56.6% 48.8%

Mentougou Before optimization 25.80 25.22 28.35 19.73 20.83 27.46 28.43 175.82

After optimization 17.91 16.55 12.14 14.98 15.47 17.47 19.62 114.14

Rate 30.6% 34.4% 57.2% 24.1% 25.7% 36.4% 31.0% 35.1%

Total Before optimization 5817.61 5824.35 6010.83 5224.64 5373.24 6322.08 6246.02 40818.77

After optimization 2852.38 2825.08 2986.99 2647.40 2666.77 2981.60 2961.29 19921.50

Rate 51.0% 51.5% 50.3% 49.3% 50.4% 52.8% 52.6% 51.2%
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current rebalancing in these districts allows the bike
quantity at each node to return to its initial level nearly.
After optimization, the nodes in Fangshan, Shunyi, and
Mentougou all reach their target number of bicycles. By
contrast, due to an excessive number of nodes and an
extremely unbalanced demand, the number of bikes that
need to be rebalanced in Chaoyang, Fengtai, and Haidian is
much higher than that in the other districts, especially in
Chaoyang. At the end of a day on weekdays, the number of
bikes that need to be rebalanced in Chaoyang exceeds
4000. These challenges reduce the bike recovery degree at
each node after the rebalancing, and the deviation between
the number of bikes at a node and the target number of the
node is significantly reduced after optimization.
Table 11 shows the cost of CO2 emissions and the losses

due to failure to meet the demand for the next day (i.e., the
economic cost) within the rebalancing before and after
optimization. The optimization reduces 62.6% of the total
economic cost. Despite the excessive use of bikes,
especially in 2017, the demand for the next day can still
be satisfied even if the number of bikes at the parking
nodes after rebalancing does not meet the target. However,
summing up the economic costs remains reasonable to
unify the two goals of reducing CO2 emissions and
limiting the deviation in the number of bikes at each
parking node. For an excessive BSS, an economic cost as
penalty is incurred if the number of bikes at each node after
rebalancing differs from the target. Meanwhile, for an
appropriately launched BSS, an economic cost as losses is
incurred if the order demand for the next day is not met.
Given the huge difference between carbon price and
amount charged for riding a shared bike (0.051 yuan/kg
and 1 yuan/order as of 2017, respectively), the economic
cost for BSS is largely determined by the deviation
between the number of bikes in a parking node and the

target number of the node. This cost is also affected by the
judgment of decision makers regarding the economic and
environmental benefits of bike sharing orders. The cost of
CO2 emissions and the economic cost caused by unmet
bike demand in parking nodes are assigned the same
weight of 1 in this paper, which will not be further
discussed.

6 Conclusions

By analyzing the temporal and spatial characteristics of the
Mobike BSS in Beijing, China, this paper formulates a
partition strategy based on the supply and demand
relationship. To solve existing rebalancing models in
which large-scale BRP are difficult to be applied, this
strategy avoids the cumbersome task of deciding the
number of bikes being loaded or unloaded at parking
nodes. We then improved existing rebalancing models, and
the objective function is the cost of CO2 emission and the
economic cost caused by unmet bike demand in parking
nodes during the rebalancing. Data from the dockless
Mobike BSS in Beijing are used to generate findings that
can help city managers or decision makers promote the
green development of BSS.
First, the efficiency of vehicle in the current rebalancing

of BSS in Beijing is low. Part of the reason is that the
current vehicles still visit balanced parking nodes, and the
other part is related to the high repetitions of the current
vehicle’s travel routes and the excessive load of vehicles.
After optimization, the driving route and CO2 emissions of
vehicles could be reduced by 51.2% and 57.5%,
respectively. Meanwhile, the number of bikes being
deployed in some districts, such as Shijingshan and
Mentougou, is too low. Second, time, geographical

Fig. 7 Number of bikes and turnover rate in different districts.
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location, and regional area are identified as the main factors
that affect the total CO2 emissions in each district. In terms
of time, due to the difference between shared bike travel
demand on weekdays and weekends, there is a large gap in

the number of bikes that need to be rebalanced in parking
nodes during the week. In terms of space, geographical
location of a district determines whether it is the main place
of BSS’s deployment and service, which will affect the

Table 8 Comparison of vehicle CO2 emissions in the rebalancing operation before and after optimization (kg)

District 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Total

Chaoyang Before optimization 1958.86 1920.04 1917.32 1720.79 1766.07 2078.32 2044.05 13405.45

After optimization 675.26 633.34 729.45 624.86 626.07 738.54 658.82 4686.34

Rate 65.5% 67.0% 62.0% 63.7% 64.6% 64.5% 67.8% 65.0%

Haidian Before optimization 913.92 881.44 912.02 777.18 861.73 972.19 937.45 6255.92

After optimization 401.26 416.34 422.95 376.50 348.48 375.71 397.68 2738.93

Rate 56.1% 52.8% 53.6% 51.6% 59.6% 61.4% 57.6% 56.2%

Fengtai Before optimization 675.12 689.88 855.61 704.06 731.68 832.67 860.59 5349.60

After optimization 343.86 380.78 397.82 342.62 358.09 430.72 434.04 2687.93

Rate 49.1% 44.8% 53.5% 51.3% 51.1% 48.3% 49.6% 49.8%

Xicheng Before optimization 289.76 306.46 300.75 241.95 247.86 316.91 296.43 2000.13

After optimization 141.47 150.89 149.97 108.55 123.25 150.02 150.17 974.31

Rate 51.2% 50.8% 50.1% 55.1% 50.3% 52.7% 49.3% 51.3%

Daxing Before optimization 514.08 480.81 493.93 423.45 441.76 567.98 544.81 3466.82

After optimization 230.53 231.18 221.39 236.87 184.52 217.41 238.83 1560.72

Rate 55.2% 51.9% 55.2% 44.1% 58.2% 61.7% 56.2% 55.0%

Dongcheng Before optimization 192.21 178.89 182.43 157.93 164.03 205.85 178.93 1260.27

After optimization 85.62 85.00 69.29 74.79 83.60 80.54 87.17 566.01

Rate 55.5% 52.5% 62.0% 52.6% 49.0% 60.9% 51.3% 55.1%

Tongzhou Before optimization 408.27 414.82 411.53 383.32 396.84 418.33 439.89 2872.99

After optimization 192.45 164.41 176.81 185.68 180.06 191.71 193.83 1284.95

Rate 52.9% 60.4% 57.0% 51.6% 54.6% 54.2% 55.9% 55.3%

Shijingshan Before optimization 153.23 172.08 148.76 139.25 137.80 167.92 164.74 1083.77

After optimization 91.60 86.03 63.25 79.72 69.61 74.84 87.31 552.35

Rate 40.2% 50.0% 57.5% 42.8% 49.5% 55.4% 47.0% 49.0%

Changping Before optimization 262.85 264.99 281.59 225.05 216.01 260.93 274.35 1785.77

After optimization 106.93 123.26 127.76 89.04 130.10 127.07 107.75 811.90

Rate 59.3% 53.5% 54.6% 60.4% 39.8% 51.3% 60.7% 54.5%

Fangshan Before optimization 105.39 121.26 99.79 87.76 93.38 120.89 110.43 738.90

After optimization 47.65 54.39 43.22 40.55 55.35 49.97 47.00 338.13

Rate 54.8% 55.1% 56.7% 53.8% 40.7% 58.7% 57.4% 54.2%

Shunyi Before optimization 117.60 147.31 140.70 111.16 106.68 146.17 152.91 922.54

After optimization 67.28 53.08 63.70 66.88 48.50 51.28 57.45 408.17

Rate 42.8% 64.0% 54.7% 39.8% 54.5% 64.9% 62.4% 55.8%

Mentougou Before optimization 25.26 23.85 27.43 19.02 19.79 26.88 27.22 169.44

After optimization 14.38 13.28 9.74 12.02 12.42 14.02 15.75 91.61

Rate 43.1% 44.3% 64.5% 36.8% 37.2% 47.8% 42.1% 45.9%

Total Before optimization 5616.53 5601.84 5771.86 4990.92 5183.61 6115.04 6031.81 39311.61

After optimization 2398.29 2391.99 2475.34 2238.07 2220.04 2501.83 2475.81 16701.37

Rate 57.3% 57.3% 57.1% 55.2% 57.2% 59.1% 59.0% 57.5%
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Fig. 8 CO2 emissions before and after optimization in different areas.
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Table 9 Area of districts in Beijing

District Fangshan Mentougou Changping Daxing Shunyi Tongzhou Chaoyang Haidian Fengtai Shijingshan Xicheng Dongcheng

Area/km2 2019 1451 1344 1036 1021 906 471 431 304 86 51 42

Table 10 Number of bikes in each district where rebalancing demands are met before and after optimization

District 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Total

Chaoyang Total demand 4817 4964 4699 3198 3480 4924 4915 30997

Before optimization 3143 3251 3016 1713 2027 2821 2889 18860

Rate 65.2% 65.5% 64.2% 53.6% 58.2% 57.3% 58.8% 60.8%

After optimization 4243 4361 4019 2826 2950 4319 4284 27002

Rate 88.1% 87.9% 85.5% 88.4% 84.8% 87.7% 87.2% 87.1%

Haidian Total demand 2553 2493 2322 1643 1859 2572 2622 16064

Before optimization 1597 1548 1444 1020 1190 1541 1658 9998

Rate 62.6% 62.1% 62.2% 62.1% 64.0% 59.9% 63.2% 62.2%

After optimization 2179 2102 2001 1408 1612 2150 2186 13638

Rate 85.4% 84.3% 86.2% 85.7% 86.7% 83.6% 83.4% 84.9%

Fengtai Total demand 2783 2777 2775 2351 2527 2835 2747 18795

Before optimization 1718 1692 1827 1574 1650 1764 1644 11869

Rate 61.7% 60.9% 65.8% 67.0% 65.3% 62.2% 59.8% 63.1%

After optimization 2409 2386 2433 2013 2199 2497 2433 16370

Rate 86.6% 85.9% 87.7% 85.6% 87.0% 88.1% 88.6% 87.1%

Xicheng Total demand 1269 1274 1163 725 824 1283 1187 7725

Before optimization 834 834 716 516 539 898 759 5096

Rate 65.7% 65.5% 61.6% 71.2% 65.4% 70.0% 63.9% 66.0%

After optimization 1141 1128 960 643 689 1128 1042 6731

Rate 89.9% 88.5% 82.5% 88.7% 83.6% 87.9% 87.8% 87.1%

Daxing Total demand 509 496 537 480 525 519 531 3597

Before optimization 382 309 307 330 342 393 369 2432

Rate 75.0% 62.3% 57.2% 68.8% 65.1% 75.7% 69.5% 67.6%

After optimization 430 426 464 411 462 470 459 3122

Rate 84.5% 85.9% 86.4% 85.6% 88.0% 90.6% 86.4% 86.8%

Dongcheng Total demand 765 837 762 520 522 705 813 4924

Before optimization 573 604 574 403 313 443 483 3393

Rate 74.9% 72.2% 75.3% 77.5% 60.0% 62.8% 59.4% 68.9%

After optimization 660 722 694 474 419 594 711 4274

Rate 86.3% 86.3% 91.1% 91.2% 80.3% 84.3% 87.5% 86.8%

Tongzhou Total demand 346 417 497 404 405 447 395 2911

Before optimization 228 296 360 275 252 338 260 2009

Rate 65.9% 71.0% 72.4% 68.1% 62.2% 75.6% 65.8% 69.0%

After optimization 318 334 378 351 358 382 339 2460

Rate 91.9% 80.1% 76.1% 86.9% 88.4% 85.5% 85.8% 84.5%

Shijingshan Total demand 687 695 654 589 541 706 608 4480

Before optimization 469 454 441 375 331 509 442 3021

Rate 68.3% 65.3% 67.4% 63.7% 61.2% 72.1% 72.7% 67.4%

After optimization 594 578 526 533 418 637 507 3793

Rate 86.5% 83.2% 80.4% 90.5% 77.3% 90.2% 83.4% 84.7%
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(Continued)
District 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Total

Changping Total demand 340 316 295 282 359 389 362 2343

Before optimization 271 243 219 201 251 230 282 1697

Rate 79.7% 76.9% 74.2% 71.3% 69.9% 59.1% 77.9% 72.4%

After optimization 301 290 252 222 294 349 308 2016

Rate 88.5% 91.8% 85.4% 78.7% 81.9% 89.7% 85.1% 86.0%

Fangshan Total demand 27 25 37 25 39 33 37 223

Before optimization 26 18 32 23 30 31 35 195

Rate 96.3% 72.0% 86.5% 92.0% 76.9% 93.9% 94.6% 87.4%

After optimization 27 25 37 25 39 33 37 223

Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Shunyi Total demand 13 34 15 21 13 12 16 124

Before optimization 13 32 14 20 10 6 15 110

Rate 100.0% 94.1% 93.3% 95.2% 76.9% 50.0% 93.8% 88.7%

After optimization 13 34 15 21 13 12 16 124

Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Mentougou Total demand 41 32 32 32 33 44 39 253

Before optimization 35 30 28 32 27 34 34 220

Rate 85.4% 93.8% 87.5% 100.0% 81.8% 77.3% 87.2% 87.0%

After optimization 41 32 32 32 33 44 39 253

Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Total Total demand 14150 14360 13788 10270 11127 14469 14272 92436

Before optimization 9289 9311 8978 6482 6962 9008 8870 58900

Rate 65.6% 64.8% 65.1% 63.1% 62.6% 62.3% 62.1% 63.7%

After optimization 12356 12418 11811 8959 9486 12615 12361 80006

Rate 87.3% 86.5% 85.7% 87.2% 85.3% 87.2% 86.6% 86.6%

Table 11 Economic cost in rebalancing before and after optimization (yuan)

District 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Total

Chaoyang Before optimization 1773.90 1810.92 1780.78 1572.76 1543.07 2207.25 2131.99 12820.68

After optimization 608.44 635.30 717.20 403.87 561.93 638.60 668.67 4234.00

Rate 65.7% 64.9% 59.7% 74.3% 63.6% 71.1% 68.6% 67.0%

Haidian Before optimization 1002.61 989.95 924.51 662.64 712.95 1078.81 1013.58 6385.05

After optimization 394.46 412.23 342.57 254.20 264.77 442.28 455.16 2565.69

Rate 60.7% 58.4% 62.9% 61.6% 62.9% 59.0% 55.1% 59.8%

Fengtai Before optimization 1099.43 1120.18 991.64 812.91 914.32 1114.89 1145.47 7198.83

After optimization 391.54 410.42 362.29 355.47 346.26 360.14 335.97 2562.08

Rate 64.4% 63.4% 63.5% 56.3% 62.1% 67.7% 70.7% 64.4%

Xicheng Before optimization 449.78 455.63 462.34 221.34 297.64 400.12 444.16 2731.01

After optimization 135.22 153.70 210.65 87.54 141.29 162.66 152.65 1043.69

Rate 69.9% 66.3% 54.4% 60.5% 52.5% 59.3% 65.6% 61.8%

Daxing Before optimization 153.22 211.52 255.19 171.60 205.53 153.79 190.97 1341.81

After optimization 90.76 81.79 84.29 81.08 72.41 61.18 83.09 554.60

Rate 40.8% 61.3% 67.0% 52.7% 64.8% 60.2% 56.5% 58.7%
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complexity of vehicle routes during rebalancing. Regional
area affects the vehicle driving distance. Third, in addition
to driving distance, vehicle load has an important impact
on CO2 emissions, especially in districts with limited space
for route optimization. Finally, Beijing has an excessive
number of BSSs, hence allowing the city to meet user
demand despite a low degree of rebalancing (less than
70%). The optimization increases the met bicycle demand
of parking nodes by more than 80%. Enterprises can
benefit from the findings of this study in reducing the scale
of BSS and in meeting next-day demand through
optimized rebalancing.
In sum, although BSS can reduce CO2 emissions, its

operations need to be optimized to achieve this benefit. The
current rebalancing also shows a large space for optimiza-
tion. While each decision maker assigns different weights
to the environmental costs incurred from CO2 emissions
and the economic costs incurred from unmet bikes demand
at parking nodes, this problem is not the focus of this paper
and is therefore not discussed in detail.
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