Skip to main content
Log in

Asymptotic Expansion Homogenization Analysis Using Two-Phase Representative Volume Element for Non-periodic Composite Materials

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Asymptotic expansion homogenization (AEH) method is a well-known approach based on the assumption of the periodicity of microstructures to obtain the homogenized material properties of composite materials. The main advantage of this method is that it can be used as a multiscale simulation tool. A new AEH method is developed in this study to estimate the homogenized elastic properties of non-periodic composite materials using two-phase representative volume elements (RVEs) composed of the inner phase of a non-periodic composite material and the outer phase of a homogenized material. The AEH method is repeatedly applied to the two-phase RVEs to update the homogenized elastic properties of non-periodic composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.L. Bensoussan, G. Lions, Papanicolaou, asymptotic analysis for periodic structures, Studies in mathematics and its applications, vol. 5 (Elsevier, Amsterdam, 1978)

    Google Scholar 

  2. P.W. Chung, K.K. Tamma, R.R. Namburu, Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Compos. Part. A 32, 1291–1301 (2001)

    Article  Google Scholar 

  3. J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias, Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling. Comput. Mater. Sci. 45, 1073–1080 (2009)

    Article  Google Scholar 

  4. J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias, Asymptotic homogenisation in linear elasticity. Part II: finite element procedures and multiscale applications. Comput. Mater. Sci. 45, 1081–1096 (2009)

    Article  Google Scholar 

  5. X. Zhuang, Q. Wang, H. Zhu, A 3D computational homogenization model for porous material and parameters identification. Comput. Mater. Sci. 96, 536–548 (2014)

    Article  Google Scholar 

  6. J. Barroqueiro, J. Dias-de-Oliveira, A. Pinho-da-Cruz, Andrade-Campos, Multiscale analysis of heat treatments in steels: theory and practice. Fin. Element. Anal. Des. 114, 39–56 (2016)

    Article  Google Scholar 

  7. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical technique to predict carbon nanotube properties. Int. J. Solids Struct. 43, 6832–6854 (2006)

    Article  MATH  Google Scholar 

  8. Y.S. Song, J.R. Youn, Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47, 1741–1748 (2006)

    Article  Google Scholar 

  9. A.L. Kalamkarov, A.V. Georgiades, Asymptotic homogenization models for smart composite plates with rapidly varying thickness: part I – theory. Int. J. Multiscale Comput. Eng. 2, 133–148 (2004)

    Article  Google Scholar 

  10. A.V. Georgiades, A.L. Kalamkarov, Asymptotic homogenization models for smart composite plates with rapidly varying thickness: part II – applications. Int. J. Multiscale Comput. Eng. 2, 149–172 (2004)

    Article  Google Scholar 

  11. K.S. Challagulla, A.V. Georgiades, A.L. Kalamkarov, Asymptotic homogenization modeling of thin composite network structures. Compos. Struct. 79, 432–444 (2007)

    Article  Google Scholar 

  12. H.J. Böhm, A short introduction to basic aspects of continuum micromechanics (CDL-FMD-Report, TU Wien, Vienna, 1998)

    Google Scholar 

  13. Z. Yuan, J. Fish, Toward realization of computational homogenization in practice. Int. J. Numer. Methods Eng. 73, 361–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Barroqueiro, J. Dias-de-Oliveira, A. Pinho-da-Cruz, Andrade-Campos, Practical implementation of asymptotic expansion homogenisation in thermoelasticity using a commercial simulation software. Compos. Struct. 141, 117–131 (2016)

    Article  Google Scholar 

  15. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Pelissou, J. Baccou, Y. Monerie, F. Perales, Determination of the size of the representative volume element for random quasi-brittle composites. Int. J. Solids Struct. 46, 2842–2855 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the EDISON Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2014M3C1A6038854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colera, D.A., Kim, HG. Asymptotic Expansion Homogenization Analysis Using Two-Phase Representative Volume Element for Non-periodic Composite Materials. Multiscale Sci. Eng. 1, 130–140 (2019). https://doi.org/10.1007/s42493-018-00014-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00014-w

Keywords

Navigation