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Abstract
Most concepts to characterize crack propagation were developed for elastic materials. When applying these methods to elas-
tomers, the question is how the inherent energy dissipation of the material affects the cracking behavior. This contribution 
presents a numerical analysis of crack growth in natural rubber taking energy dissipation due to the visco-elastic material 
behavior into account. For this purpose, experimental tests were first carried out under different load conditions to param-
eterize a Prony series as well as a Bergström–Boyce model with the results. The parameterized Prony series was then used 
to perform numerical investigations with respect to the cracking behavior. Using the FE-software system ANSYS and the 
concept of material forces, the influence and proportion of the dissipative components were discussed.

Keywords  Material forces · Crack propagation in elastomers · Bergström–Boyce · Finite element analysis

Introduction

Due to their mechanical properties, especially their high 
deformability, elastomers have a wide range of applications. 
The design of components requires an understanding of fail-
ure and wear, which in turn requires an understanding of 
crack initiation and propagation. Nowadays there are several 
well-established concepts to characterize cracks in the con-
text of brittle fracture like the J-integral [5, 23]. However, 
when applied to elastomers, the question of the influence 
of dissipative material behavior on this concept arises. In 
the context of the present work, material forces are used to 
describe the influence of the dissipative material behavior on 
the crack. The material behavior of elastomers is presented 
by through constitutive models, which includes a suitable 

visco-elastic characterization. This material description is 
finally used to describe crack propagation experiments by 
material forces and to verify the applicability of the extended 
approach.

The foundation of material or configurational forces is the 
work of Eshelby [10], in which the elastic energy-momen-
tum tensor is introduced to describe the force on defects and 
inhomogeneities in an elastic continuum. In a later work 
[9], he recognizes that the material forces on a crack in a 
purely elastic body under quasi-static load correspond to 
the well-known J-integral. The concept of material forces 
offers a more general interpretation of the J-integral and thus 
a unified approach to the description of cracks in complex 
materials such as hyperelastic [29], viscoelastic/elastoplastic 
[19, 20] ,or magnetoelasticity [12].

From a phenomenological point of view, polymers exhibit 
both non-linear finite elastic and inelastic behavior including 
deformation induced damage effects. Describing this behav-
ior with a constitutive model has been an active research 
area for many years. Though, most of the approaches can 
only account for some of these effects. Experimental obser-
vations, in which elastomers have been loaded by a step in 
strain, have shown that the stress relaxes towards a state of 
equilibrium (e.g. [11]). Based on such tests, the mechani-
cal behavior of elastomers under infinitely slow loading is 
described using hyperelastic material models. There are 
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numerous different approaches for the formulation of such 
models, which are compared for example in [17].

Polymers under cyclic loading show that the non-equi-
librium behavior is dependent on both rate and temperature 
[16, 22]. A widely used way to model the time dependence 
of relaxation is to use dimensionless relaxation modules, 
which are usually represented by a Prony series (e.g. [13]). 
This approach shows good results, especially for small 
strains. Another approach is to decompose the deformation 
gradient multiplicatively into an elastic and a viscous part, 
which is used for example by the Bergström–Boyce model 
(BB model) [4]. Compared to the Prony series, this model 
is not based on a single hereditary integral with stress-like 
internal variables, but the inelastic part of the deformation 
represents strain-like tensorial state variables. This approach 
uses a non-linear evolution equation for the strain-like vari-
able to better model the relaxation in the finite strain regime.

This paper is organized as follows: In the second sec-
tion, the mechanical behavior of carbon black-filled rub-
ber is investigated. For this purpose, the BB model and the 
Prony are introduced and the experimental methodology 
is presented. Subsequently, the equilibrium and viscous 
behavior are analyzed separately. Then, in the third sec-
tion, the cracking behavior of rubber is investigated, first 
introducing the methodology for determining the material 
forces and then presenting a numerical example for crack 
characterization. Finally, to sum up, a conclusion is drawn 
in section “Conclusions”.

The material behavior of carbon black filled 
elastomers

Continuum mechanical description of the BB model

Each body B consists of a set of material particles and is 
described through its configurations �i . Then let X⃗ be a 
one-to-one correspondence between a Particle and the Point 
that B occupies within �0 at reference time t0 . The func-
tion � maps all Points X⃗ of this reference configuration onto 
points x⃗ = 𝜓(X⃗, t) of the current configuration. To describe 
the transition between the reference and the instantaneous 
configuration, the deformation gradient � is introduced by 
� = 𝜕x⃗∕𝜕X⃗ and the volume change J, which is defined by 
J = det(�) . Furthermore, the eigenvalues of the deformation 
gradient �i in the main strain space describe the elongation 
of the body B . The BB model is based on a multiplicative 
decomposition of the deformation gradient, which is based 
on experimental observations. As a consequence, the sim-
plified material behavior of a polymer can be modeled as 
two networks, as shown in Fig. 1. The elastic equilibrium 
behavior is modeled by a single spring in A, whereas the 

spring and damper in B represent the time-dependent vis-
cous component. Thus, an applied deformation � affects both 
networks in equal measure, while the deformation in B can 
be decomposed by the relationship

into the deformation of the damper �v and the spring �e . 
With the viscous part �v , an intermediate configuration is 
introduced, in which virtual unloading of the elastic part in 
B takes place and thus a stress-free relaxed state prevails. 
If one compares the BB model with one-term Prony series, 
the difference becomes apparent in the description of the 
damper. In the Prony series, the strain rate in the damper is 
described as a linear function of the Stress in B. Whereas in 
the BB model the rate is based on a non-linear relationship, 
which is derived from a Reptition-type tube theory.

An important finding from this micromechanically 
inspired idea is that the viscous flow is energetically acti-
vated, as the tube-like conformation areas of the polymer 
chains act as an energy barrier. Consequently, the relaxa-
tion process is described through

which defines the effective flow rate in network B. The first 
part of the Eq. (2) describes the dependence on the actual 
chain elongation via the material parameters c and 𝜆̇0 as 
well as the principle macroscopic stretch state �chain . The 
principal macroscopic stretch state is based on the 8-chain 
assumption [1] and defined by �chain =

√
I1∕3 . The sec-

ond part of the Eq. (2) describes the connection of ̇𝛾B to 
the applied stress, which is assumed to be energetically 
activated. This relation is modeled through a generically 
expressed power-law, depending on the material parameters 
𝜏 and m and an effective stress measure ‖ dev (�B)‖F , where 
‖‖F is the Frobenius norm and dev (�) is deviatoric part of 
the Cauchy stress tensor. N() is a function to provide the 
direction of the viscoelastic flow depending on the viscous 
stress in B. For a more detailed explanation of the BB model, 

(1)�B = �e�v,

(2)̇𝛾B = 𝜆̇0

�
𝜆chain − 1

�c
⋅

�‖ dev (𝜎B)‖F
𝜏

�m
⋅ �

�
𝜎B

�
,

A B

Fig. 1   One dimensional rheological representation of the BB model
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especially with regard to the numerical implementation, the 
reader is referred to [6].

For a constitutive description of the mechanical behav-
ior, a function of the Helmholtz free-energy density is 
introduced

which can be split into a volumetric and isochoric part. 
The isochoric part of the deformation is characterized by 
�̃ = J−1∕3� . To account for the idealization of incompress-
ible materials �v is introduced in [3] as

where the scalar � can be interpreted as hydrostatic pressure. 
For the isochoric response of the material, �i can be defined 
by a phenomenological approach like the Ogden model [21]

where �p and �p are material parameters and n the num-
ber of terms. A micromechanically inspired approach is the 
Extended Tube Model [14]

where � and � are material parameters, describing the finite 
extension of the polymer and global rearrangements of 
cross-links upon deformation, Ĩ1 = 𝜆̃2

1
+ 𝜆̃2

2
+ 𝜆̃2

3
 is the first 

invariant of the isochoric part of the Cauchy–Green tensor, 
Gc the shear modulus characterized by the cross-linking of 
the network, and Ge the shear modulus defined by the confin-
ing tube constrains.

To reproduce the viscous material behavior it is useful 
to split the isochoric free energy further by

into an elastic �i,∞ and a viscous �i,v part. The elastic part char-
acterizes the equilibrium state. Where the viscous part defines 
a dissipative potential, describing a non-equilibrium state. By 
deriving Eq. (7) with respect to the deformation gradient

a relationship can be found for the spherical �v and devia-
toric �i,∞ part of the 1-Piola–Kirchhoff stress. Furthermore, 
the quantity �i,v can be introduced, which can be interpreted 
as non-equilibrium stress.

(3)𝛹 (�) = 𝛹v(J) + 𝛹i(�̃),

(4)�v(J) = �(J − 1)2,

(5)𝛹i(𝜆̃i) =

n∑

p=1

𝜇p

𝛼p

(
𝜆̃
𝛼p

1
+ 𝜆̃

𝛼p

2
+ 𝜆̃

𝛼p

3
− 3

)
,

(6)

𝛹i(𝜆̃i) =
Gc

2

[
1 − 𝛿2(Ĩ1 − 3)

1 − 𝛿2(Ĩ1 − 3)
+ ln

(
1 − 𝛿1(Ĩ1 − 3)

)]

+
2Ge

𝛽2

3∑

p=1

(
𝜆̃−𝛽
p

− 1
)
,

(7)𝛹 (�, �e) = 𝛹v(J) + 𝛹i,∞(�̃) + 𝛹i,v(�̃e)

(8)
𝜕𝛹 (�̃, �̃e)

𝜕�
= �v + �i,∞ + �i,v,

Experimental procedure

To model complex material behavior correctly tensile 
tests under uniaxial (UA, �1; �2 = �3 = 1∕

√
�1  ), plane 

strain (PS, �1; �2 = 1; �3 = 1∕�1 ) and equibiaxial (EB, 
�1 = �2; �3 = 1∕�2

1
 ) loads were carried out to parametrize 

the material models. The PS and EB tests were carried out 
on the biaxial test machine, built by Coesfeld GmbH & Co, 
Dortmund, Germany, which is described in more detail by 
[25]. Besides, uniaxial tensile tests were carried out on an 
universal tension-testing machine Z010 of ZwickRoell, Ulm, 
Germany. A NR20 (natural rubber, 20 phr carbon black) 
material mixture from Weber & Schaer GmbH & Co. KG. 
was used. The compounding recipe is shown in Table 1. The 
samples were vulcanized with sulfur as a crosslinker for 10 
minutes at 150 ◦C . For the PS and EB test, a square speci-
men of 77 x 77 x 1.8mm3 with a bulge (diameter 5.5mm ) 
was used. For the UA tests, a dumbbell specimen with a 
length of 75mm was stamped out of the square specimen 
after preconditioning.

In preliminary tests, the strain fields of the test specimens 
were determined through an optical method of grey-value 
correlation, using the ARAMIS software from GOM GmbH, 
Braunschweig. Thus, a second-order polynomial, describing 
the mean strain as a function of displacement, was used to 
evaluate the experimental strains. The material parameters 
are determined in two stages: For the purely elastic char-
acterization, the test specimen is loaded step by step with 
relaxation times in between to a maximum strain and then 
also unloaded again, as shown in Fig. 2. In a second test, the 
rate-dependent characterization is done by series of tests, 
each with one load cycle of different maximum strains and 
strain rates, which are listed in Table 2.

Table 1   Composition of ingredients in parts per hundred rubber (phr)

Natural rubber (SMR 10) 100.0
Carbon black (Corax N330) 20.0
Zinc oxide (Rotsiegel) 3.0
Stearic acid 2.0
C18H24N2 (Vulkanox 4020) 1.0
Sulfur 1.5
C13H16N2S2 (Vulkacit CZ) 0.5

Table 2   List of the applied stretch rates and maximum stretches

Stetch rate Max stretch

1.3 1.6 1.9 2.2

0.01 1∕s EB/PS/UA EB/PS/UA EB/PS/UA EB/PS/UA
0.3 1∕s EB/PS/UA EB/PS/UA EB/PS/UA EB/PS/UA
2.4 1∕s EB EB EB EB/PS
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The determination of the material parameters represents 
a non-linear optimization problem. To solve this problem, 
a suitable measure for the quality of the fit and a non-linear 
optimizer is required. All experiments were strain-con-
trolled, thus the difference between simulated and experi-
mental stresses was used to determine the error. A common 
measure of error is the normalized mean absolute deviation 
(“NMAD”), which is estimated according to [15] by

This error measure is considered robust and can be used 
for the comparison of several tests with different strain and 
stress amplitudes due to its standardization. Within this 
work, the “Differential-Evolution” and “Basin-Hopping” 
algorithms from the Python-based software SciPy are used 
as optimizers. The stress for the simulated material behav-
ior for the purely elastic behavior is determined in an own 
Python routine. The cyclic experiments were simulated in a 
FE analysis with a single second-order hexahedral element 
and corresponding boundary conditions.

Equilibrium behavior

The results of the step test in Fig. 2 show that the stress 
on the loading path relaxes faster than on the unloading 
path. In [16] this phenomenon is interpreted as a proof 
that the equilibrium behavior can only be represented by a 
hysteresis. Another explanation is given in [2]. The relax-
ing parts of the polymer on the load path are subjected to 
tensile forces, whereas those on the unloading path are 
under compressive load. This causes a fundamentally dif-
ferent behavior. Another aspect is the different distance to 
the equilibrium state. Although the total elongation at each 
stage is the same due to the same external displacement, 
this does not imply the same loading of the viscous parts, 

(9)�NMAD =
⟨��sim − �exp�⟩

⟨��exp�⟩
.

since the material cannot completely relax at any stage. 
Experimental confirmation of one explanation seems pos-
sible only by infinitely long relaxations test, which is not 
possible.

However, the following investigation aims to deter-
mine the most suitable test parameters to determine the 
equilibrium curve. The equilibrium stress is in the range 
between the stresses after the steps with the same strain. 
Determining the value from the arithmetic mean leads to 
an overestimation of the equilibrium, because the stress 
on the loading path relaxes faster. Suitable test parameters 
lead to a small difference in stress �P and therefore to 
the smaller error in determining the equilibrium points. 
The studied parameters are �tD and �tr , which accordingly 
describe the finite time to apply the deformation and the 
relaxation time on each load step. The Fig. 3 shows the 
influence of the loading time on the different stresses from 
loading and unloading with the same strain magnitude of 
a PS tensile test.

The Fig. 3 also shows, that the difference decreases with 
increasing strain. This is due to the fact that the relaxation 
process is energetically activated. Because at higher strains 
there are also significantly higher stresses, the material 
relaxes much faster towards equilibrium. Furthermore, the 
figure also shows that a decreasing loading time leads to 
a strong decrease in the difference. This becomes particu-
larly clear comparing test with �tD = 1 s and �tD = 10 s . 
An analogous comparison of relaxation times of 1min 
and 10min was done. The difference in stresses decreases 
with increasing relaxation time. However, the minimiza-
tion of the difference and thus of the error does not seem 
to be justified by the significantly higher experimental 
effort. For the determination of the equilibrium stress, 
it is, therefore, appropriate to carry out step tests with 
𝛥tr > 60 s and 𝛥tD > 10 s , which is equivalent to stretch 
rates of 𝜆̇ < 0.01 s−1.

∆
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Fig. 2   Stretch � and stress � curve over time t in a step test. Loading 
times �tD and relaxation times �tr at each step �P
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Fig. 3   Influence of loading time �tD on the difference of stresses 
between loading and unloading path of step tests after a relaxation 
time of �tr = 60 s
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Parameter identification of the material model

The step tests were carried out and the corresponding points 
on the equilibrium curve were determined. These points 
were used to parameterize both an extended Tube model 

and a second-order Ogden model, which lead to the mate-
rial parameters in Table 3. The points are shown together 
with the result of the extended Tube model in Fig. 4. The 
extended tube model has the smallest normalized error of 
�NMAD = 0.054 . Especially the behavior during uniaxial 
and equibiaxial tension can be well reproduced by the 
model. On average, the predicted stresses deviate less than 
0.02MPa from those in the experiments. On the other hand, 
the behavior in plane tension can be described much worse, 
resulting in a mean error of 0.131MPa . The results of the 
Ogden model with two parameters show a similar quality 
with �NMAD = 0.057.

The cyclic tests were carried out and the results were 
used to parameterize a BB model using the Ogden model 
as hyperelastic part in the FE software ABAQUS. In com-
parison to this, a Prony series with 10 links based on the 
extended tube model was characterized in ANSYS. The 
error for both models is �NMAD = 0.096 . A comparison of 
some experiments with the corresponding simulated results 
is shown in the Fig. 5. The corresponding material param-
eters are listed in Table 4. The illustration shows that viscous 
behavior can be represented quite well in some load cases 
like Fig. 5a, b whereas the other two cases are not described 
sufficiently.

One reason for the deviations between the calculated and 
the experimental stress curves is the path dependent relaxa-
tion. As described in the last section, the relaxation is faster 
on the loading path than during unloading. The models can-
not represent this behavior properly. A further problem is the 
dependence of the relaxation on the current stretch. Again 
the Prony series cannot model this. The BB model describes 

Table 3   Parameters of two hyperelastic material models for NR20

Model Parameter

Extended tube Gc = 0.3897MPa � = 0.0070

Ge = 0.2782MPa � = −0.1792

Ogden(n = 2) �1 = 0.4127MPa �1 = 2.2200

�2 = −0.3663MPa �2 = −1.0146

2.20.28.10.1 2.1 4.1 6.1
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Fig. 4   The markers show the stretch-strain behavior of NR20, which 
was derived experimentally from the step tests. Besides, the lines 
show the course of the parameterized extended tube model

Fig. 5   Comparison of simulated 
and measured stress stretch 
curves for different load cycles. 
a UA tension at 0.3 s−1 . b BA 
tension at 0.01 s−1 . c PS ten-
sion at 2.4 s−1 . d BA tension 
at 1.4 s−1 . The BB model was 
calculated with ABAQUS and 
the Prony series with Ansys

a b

c d
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this via the principal macroscopic stretch �chain , which is only 
determined by the first invariant of the elongation. Therefore, 
load cases, which include a change in the second invariant of 
the Cauchy–Green tensor, cannot be capture by the BB model 
correctly.

Crack behavior

Material forces

The starting point for this approach is the Eshelby stress tensor 
or energy momentum tensor of elastostatics, which is defined 
as

where � is the Kronecker delta and ∇u⃗ is the gradient of the 
displacement. The sink in the field of � at a crack tip can 
be interpreted as a driving force for the crack growth and is 
called material force. Material forces differ from the “nor-
mal” forces in that they are described by changes in material 
and not in the actual physical reference system, see [18] for 
an extensive explanation. In a two-dimensional elastic body 
with a crack, a shrinking path S around the tip is defined, 
like in Fig. 6. Applying the divergence theorem the material 
forces R⃗ can be calculated by

(10)� = 𝛹𝛿 − �T ⋅ ∇u⃗,

where r describes the radius of the shrinking path S and n⃗ the 
normal vector to the path. For a general calculation of R⃗ , a 
closed integration path via an arbitrary path �  , including the 
crack edges � + and � − , will be defined. This contour charac-
terizes the defect-free material area A� , which does not con-
tain the crack tip. For this path, the Eq. (11) is extended by

The surface integral in Eq. (12) is called dissipation force 
and defines the inelastic body force. With purely elastic 
material behavior and straight crack growth, the contour 
integral over the edges and the surface integral vanish, and 
the Eq. (12) is simplified to a path independent vectorial 
J-integral. A prerequisite for the use of this concept is that 
the constitutive material laws are derived from the Helm-
holtz free energy and that a change in non-elastic strains is 
accompanied by a dissipative potential [19].

Numerical example

For the numerical investigation of cracks, the tests on the 
biaxial testing machine were simulated. The discretiza-
tion for the FE model is shown in Fig. 7, which uses plane 

(11)R⃗ = lim
r→0 ∫S

(
𝖰n⃗

)
ds,

(12)R⃗ = ∫𝛤

(
�n⃗

)
ds + ∫𝛤++𝛤−

(
�n⃗

)
ds − ∫

A𝛤

(
∇ ⋅ �T

)
dA.

Table 4   Parameters of two 
viscoelastic material models for 
NR20

Model Parameter

Ogden— �1 = 0.413MPa �2 = −0.366MPa �1 = 2.22 �2 = −1.015

BB 𝜆̇0∕𝜏
m = 14.96 �i,v∕�i,∞ = 0.65 c = 4.61 m = −0.85

Extended G
0
c
= 0.643MPa G

0
e
= 0.459MPa � = 0.007 � = −0.1792

Tube—
Prony series �1 = 567.111 s �6 = 4.401 s a1 = 0.053 a6 = 0.033

�2 = 611.972 s �7 = 0.172 s a2 = 0.040 a7 = 0.049

�3 = 51.914 s �8 = 0.985 s a3 = 0.018 a8 = 0.035

�4 = 40.842 s �9 = 0.026 s a4 = 0.016 a9 = 0.045

�5 = 1.614 s �10 = 0.079 s a5 = 0.052 a10 = 0.055

Fig. 6   a Section of a cracked 
body with different ways of 
integration. Schematic represen-
tation of the energy momentum 
tensor as a vector field with b 
only a sink at the crack tip for 
purely elastic materials and c 
sink at the crack tip and away 
from it for dissipative materials

S

x

y

r

Γ+

Γ

Γ−

AΓ

a b c
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quadrilateral elements with a second order shape func-
tions. The crack tip was modeled by collapsed quadrilateral 
elements.

The material forces were calculation in an own user-
subroutine. For this, the line integral in Eq. (11) was con-
verted into a surface integral via a virtual crack extension as 
described in [26]. All required parameters were determined 
or interpolated at the integration points. The integration was 
done numerically via the Gaussian quadrature.

In the first step, the relation between material forces in the 
direction of crack growth and the radius of the line integrals 
is analyzed. A displacement was applied to the upper side of 
the model to stretch the sample outside the crack region up to 
�y = 1.25 . The strain rate is initially set to 𝜆̇y = 0.5 s−1 . The 
material is described by the extended-tube model extended 
by a prony series, which was defined in section“ Parameter 
identification of the material model”. Figure 8 shows the 
results of this investigation.

The graph shows a local maximum point with 8.3N∕mm 
at the first element row around the crack tip and decreases to 
a value of 7.5N∕mm at r = 0.3mm . This phenomenon has 
been described in the literature with elasto-plastic material, 
see [20, 27]. The area with the same strain magnitude around 
the crack tip is kidney-shaped. However, the evaluation of 
the material forces are carried out by circular line integrals, 
which is going through areas with different strain rates 
and thus also different material stiffness. From a distance 
of r = 0.3mm , Rx begins to rise to a value of 9.2N∕mm 
at the very edge of the specimen. This increase is due to 
the viscous behavior of the material, converting energy 
independent of crack propagation. In addition, the rate of 
change decreases with distance to the crack tip, since the 
strain rates and thus also the dissipation becomes smaller. 
This area acts as a material shield, since parts of the energy 
introduced from the outside do not flow further to the crack, 

but dissipate on the surface. The phenomenon of material 
shielding or reverse anti-shielding is described in [28].

In a second step, three quantities and their dependencies 
on stretch rate are compared: Rx,T is calculated by a path of 
the first element row around the crack, Rx,F is determined 
by a path along the edge of the sample and the vectorial 
J-integral Jx . Rx,T characterizes the driving force of the crack 
growth. Rx,F consists of both the driving and the global dissi-
pation forces. Therefore, this quantity includes all dissipative 
processes even those far away from the crack tip, analogous 
to the tearing energy [24]. These values are compared to 
the Jx , which was calculated with a purely elastic material 
without Prony extension. Jx characterizes the crack behav-
ior under infinitely slow loading rates. Again the model 
was loaded by a displacement with the same magnitude of 
�y = 1.25 , but at different rates.

Figure 9 shows that Jx underestimates the driving force 
Rx,T . At very low strain rates such as 𝜆̇y = 0.005 s−1 , this error 

Fig. 7   FE-mesh of the symmet-
rical biaxial sample with used 
boundary conditions including 
model dimensions

crack

λyy

x

Rx,F

Rx,T

0−10 67

0

38.5

Fig. 8   Proportion of material force in the direction of crack growth R
x
 

as a function of the distance to the tip r 
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is only 17% . However, at higher strain rates like 𝜆̇y = 2.5 s−1 , 
the error increases up to 40% . Furthermore, this approach 
fails to examine the influence of the load rates. On the other 
hand, Rx,F overestimates the value of Rx,T . At 𝜆̇y = 2.5 s−1 this 
error is 7% but increases to 30% at 𝜆̇y = 0.005 s−1.

The Fig. 9 also shows that the material forces acting 
directly on the crack tip are of the same order of magnitude 
as those acting in the region far from the crack tip. This 
is again an indication that under the investigated boundary 
conditions the dissipative effects for the crack propagation 
are of the same order of magnitude as the viscous effects far 
from the crack tip. Additionally, Rx,F depends on the sample 
size. Therefore, for an exact description of the crack behav-
ior of elastomers, these energetic parts must be considered 
separately.

Both Rx,T and Rx,F increase with the loading rates. For the 
investigated range the relation between the two quantities 
and the logarithm of the stretch rate is approximately linear. 
The increase of Rx,F is due to the fact that the stiffness of 
the material increases with increasing rate. If the test speci-
men is loaded with the same strain amplitude but at differ-
ent strain rates, the external forces do more work, which in 
turn leads to an increase in material forces. Compared to 
Rx,F , the value of Rx,T increases much faster. This finding 
suggests that at higher load rates a higher proportion of the 
work is done independently of crack growth compared to 
lower rates.

Conclusions

In this contribution, a BB model as well as a Prony series 
were parameterized based on experiments to describe the 
rate-dependent viscous behavior of natural rubber. To model 
even complex loading conditions not only UA and PS, but 

also EB tests were carried out. The models show some dif-
ficulties in correctly characterizing the dissipative behavior, 
for which reasons were discussed.

Common methods for crack characterization such as the 
J-integral or the tearing energy fail to include the influence 
of dissipative effects in inelastic materials or to isolate them 
from effects far away from the crack tip. Therefore, here 
the concept of material forces and dissipation rate was used 
to separate these energetic quantities within a framework 
of finite element analysis. In the next step, this separation 
has to be performed experimentally and compared with the 
numerical results through thermographic measurements like 
[7, 8].
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