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Abstract
The problem of identification of single crop fields is a challenge when single date optical remote sensing image is used. 
The use of temporal images solves this problem. However, issues like cloud cover in optical images influence accuracy 
of results. Microwave data, which penetrate through the atmosphere, solve this problem. The existence of mixed pixels 
in satellite images and nonlinearity in image classification is also overlooked. These issues were considered and worked 
on by integrating C band RISAT-1 with Formosat-2 temporal images and using possibilistic c-means classifier with simi-
larity and dissimilarity norms to identify late transplanted paddy (Oryza sativa) fields in Haridwar District of India. Three 
datasets in different temporal combinations of microwave and optical images were classified for various similarity and 
dissimilarity norms for different values of weighted constant. Favorable results were achieved for Manhattan and mean 
absolute difference norm at weighted constant m = 1.3. Classification of late transplanted paddy for datasets contain-
ing multiple RISAT-1 and single Formosat-2 images with transplanting, growth stages was found to yield best results as 
compared to other combination of temporal images.
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1 Introduction

Identification of a single crop has an advantage for the 
government as they can undertake different policies for 
the masses as well as regulate import and export strat-
egy. Crop type maps often come to rescue of national and 
regional agricultural. They provide information to facilitate 
water resource planning for irrigation [1, 2], crop yield 
assessment and forecasting [3, 4] as well as mapping soil 
productivity [5]. A lot of fluctuations have been seen in the 
grains market especially in the last decade. The production 
of wheat and rice dropped from 63 to 16 MT between 2002 
and 2007 [6]. This situation was of major concern for the 
national food security. Hence, for efficient analysis of such 

conditions, monitoring single crop for its yield, acreage 
and agricultural pattern is essential [7].

Orthodox methods to compose crop type maps are 
based on ground surveying and census and record keep-
ing [8]. These methods lack standardization. In order to 
standardize, the continuous nature of collecting informa-
tion using remotely sensing satellite has proven efficient 
[9–11]. Satellite images obtained from different sensors 
and of different time durations can be clubbed together 
to obtain datasets with relatively low spectral dimensions. 
Many studies have exploited the use of optical images for 
carrying out crop-based analysis [12–15].

One major concern related to the optical data still 
remains the validity of how accurately the atmospheric 
corrections are done. This issue is confidently handled by 
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microwave remote sensing [16–18]. Crop identification can 
be successfully carried out by classifying temporal satel-
lite images as reflectance corresponds to crop phenology 
and single date image analysis is a challenge [19]. Pixel-
based hard classification technique where spectral mixing 
at class boundaries does not exist has been traditionally 
carried out in crop studies [13, 20]. In such studies, non-
linearity of classes goes unnoticed. The present study tries 
to overcome this problem of hard classification by using 
soft classification technique for handling mixed pixels 
using temporal normalized difference vegetation index 
(NDVI) obtained from Formosat-2 and temporal synthetic 
aperture radar (SAR) images obtained from Radar Imaging 
Satellite-1 (RISAT-1) for classification paddy (Oryza sativa).

The complete growth cycle of paddy is divided into five 
stages and is observed in the time frame starting from end 
of June to the start of November. These stages include the 
transplanting period; seedling development stage; ear dif-
ferentiation period; the heading period; and the matura-
tion period where the rice plant is matured and ready for 
harvesting [21]. It is observed that long growing season 
is favorable for high paddy yields, and hence, the trans-
planting season starts at an early date as compared to the 
previous growth cycles. The life cycle of paddy is around 
120–150 days, but a variation is observed as the paddy 
type changes. The spectral signatures at crop growth 
stages in the time domain can help in discriminating vari-
ous crops and vegetation patterns [22]. This phenological 
aspect was used to map paddy fields through multi-tem-
poral datasets.

The objective was to classify paddy fields over a region 
and estimate the regions with maximum possibility of 
paddy cultivation. The supervised classification was cho-
sen over unsupervised one as it provided the user to 
manipulate the pixel’s spectral values and not rely on the 
clustering patterns generated by algorithms. The spatial 
resolution of satellite image is directly proportional to the 
values captured in the pixels. Coarser the spatial resolu-
tion higher is the chance that the pixel is a part of more 
land cover types; these pixels are termed as mixed pixels. 
In traditional hard classification techniques, algorithms 
assign pixels to specific land cover types which results in 
loss of information. To handle the mixed pixel issue in the 
classification, possibilistic c-means (PCM) classifier was 
selected over fuzzy c-means (FCM) classifier as member-
ship values of PCM are a measure of ‘degree of belonging’ 
[23], while that of FCM is ‘degree of sharing’ [24]. In PCM, 
the clustering problem is drafted in the possibility domain 
where the resultant partitions are interpreted as possibil-
istic partition.

The major objective of the research was to soft clas-
sify the bi-sensor temporal images and compare between 
the norms for the best separation of linear classes. Other 

objectives include: (1) to evaluate combined bi-sensor 
datasets for better extraction of paddy fields, (2) to iden-
tify best date combination of bi-sensor datasets for iden-
tification of paddy fields and (3) to compare similarity and 
dissimilarity norms via PCM classifier.

2  Indices and measures

2.1  Normalized difference vegetation index (NDVI)

In order to reduce the spectral dimensionality of the data-
set, vegetation indices were used. The NDVI band ratio was 
proposed by Kriegler et al. [25]. It was observed that the 
vegetation pigments have high absorptivity in the red 
spectral wavelength and high reflectance in the near infra-
red wavelength. This observation was successfully drafted 
into a band ratio where Red and NIR bands were used to 
reduce dimension of dataset. The NDVI is calculated using 
Eq. (1):

where �NIR represents reflectance at near infrared band and 
�RED represents reflectance at red band.

2.2  Possibilistic c‑means (PCM) classification 
method

PCM classifier generates membership values which are 
interpreted as degree of belongingness or typicality [26]. 
The actual feature classes should have high membership 
values as compared to the values associated with unrep-
resentative features. The objective function is expressed 
in Eq. (2):

where C is the number of classes, N is the number of pix-
els, m is the weighted constant, and �i (scale or resolution 
parameter) are suitable positive numbers. The first term 
demands that the distance from the feature vector to the 
prototypes be as low as possible, whereas the second term 
forces uij (fuzzy membership value) to be as large as pos-
sible to avoid the trivial solution. The resolution parameter 
is calculated as in Eq. (3):
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The fuzzy membership value uij is calculated from 
Eq. (4):

2.3  Similarity and dissimilarity measures

2.3.1  Similarity measures

Similarity measure between two sequences is a measure 
that quantifies dependencies between them. The similar-
ity measures of cosine and correlation are applied with 
PCM classifier.

Cosine This similarity norm measures the cosine angle 
between two vectors of an inner product space. It is men-
tioned in Eq. (5):

Correlation Pearson’s correlation coefficient (r) is used to 
measure the similarity between the two items. The same 
is formulated in Eq. (6):

2.3.2  Dissimilarity measures

This measure between two sequences quantifies the 
independency between them. The dissimilarity measure 
D is considered a metric if it produces a higher value as 
corresponding values in the sequence become less inde-
pendent. A total of ten dissimilarity norms of Bray Curtis, 
chessboard, Manhattan, Canberra, Euclidean, mean abso-
lute distance, median-absolute distance and normalized 
squared Euclidean are evaluated in the PCM classifier [27].

Bray Curtis This norm is a statistic used to quantify the 
compositional dissimilarity between two sites based on 
counts on each site [28]. Equation (7) describes this norm.

Chessboard Also known as the Chebyshev distance, this 
metric distance is defined on a vector space where the 
distance between the two vectors is the greatest of their 
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distances along any coordinate dimension. Equation (8) 
gives the chessboard norm.

Manhattan This norm is the sum of absolute intensity 
differences and is one of the oldest norms. The generalized 
equation used is shown in Eq. (9).

Canberra This norm is the weighted version of Manhat-
tan distance. It is a numerical measure of point pairs in 
vector space. The formula is stated in Eq. (10).

Euclidean Euclidean distance between two points is cal-
culated as square root of the sum of the squares of the dif-
ference between the corresponding points. Equation (11) 
explains the Euclidean distance. The Mahalanobis and 
diagonal Mahalanobis norms are calculated as per Eq. (12).

where A−1 is both variance–covariance and diagonal 
variance–covariance.

Mean Absolute Difference This norm measures the mean 
of the absolute deviation from the central point. It is the 
summary statistics of variability. Equation (13) discussed 
this norm.

Median-Absolute Difference This dissimilarity norm 
reduces the effect of impulse noise on the calculated 
images. The formula for this norm is represented in Eq. (14).

Normalized Squared Euclidean This norm normalizes the 
measure with respect to the image contrast. In the cal-
culation of correlation coefficient, scale normalization is 
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performed once after calculating the inner product of the 
normalized intensities. Equation (15) describes this norm.

2.4  Backscattering coefficient

The backscatter coefficient (�0 ) is defined as the differen-
tial scattering cross section per unit volume for a scattering 
angle of 180′. Measurements of this quantity involve the 
projection of a pulsed ultrasound beam into a volume con-
taining the medium of interest and monitoring echo signals 
due to scattering. The formula used for calculating backscat-
tering coefficient for RISAT-1 data is given in Eq. (16) [29].

where DNp is the digital number for the pixel p, KdB is the 
calibration constant in dB, ip and icenter are the incidence 
angle for pixel p and center of the scene, respectively. The 
value of DNp is calculated using Eq. (17).
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where DNIp is DN value of in-phase (real channel) com-
ponent and DNQp is DN value of quadrature (imaginary 
channel) component.

3  Study area and data used

The study area is situated on the east side of Haridwar, 
Uttarakhand, India, toward national highway 74 as seen 
in Fig. 1. The central latitude and longitude of the area are 
29°52′20.3124″N and 78°10′25.0998″E. River Ganges flows 
through the district, and hence, the land here is fertile 
and conducive for agriculture. The major crops cultivated 
in this region include wheat, rice, sugarcane, mustard, 
groundnuts and fruits like mangoes and litchis. The tem-
perature in summer ranges from 25 to 44 °C, while that in 
winter ranges from − 2 °C to 24 °C. The area of the city is 
12.3  km2 (Table 1). 

In most of the researches carried out, optical data were 
used extensively for crop mapping. In India, the mon-
soon season coincides with the transplanting season for 

(17)DNp =

√(
DNI2

p
+ DNQ2

p

)

Fig. 1  Study area as seen in 
Formosat-2
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paddy crop. Due to this, the remotely sensed data have 
cloud cover which makes it difficult to understand and 
exploit the pixel values. The occurrence of atmospheric 
disturbances, cloud cover, creates gaps in temporal data 
and decreases the accuracy of results [30]. Data used for 
this research work include four satellite images obtained 
from RISAT-1 (two images) and Formosat-2 (two images). 
RISAT-1 images are microwave images in the C band 
(5.35 GHz) frequency range with dual polarization HH 
and HV in Medium Resolution ScanSAR (MRS) mode. The 
electromagnetic radiation is a combination of electric 
and magnetic waves in which the electric field dictates 
the direction of propagation. When the receiving antenna 
points in the same direction of that of propagation, best 
results are achieved. Hence, if the propagation of waves is 
in the horizontal domain and the antenna also points in 
the same direction, the polarization achieved is termed 
as HH.

The study uses the HH polarization as it was found suit-
able for paddy monitoring [21, 31]. Based on their studies 
in the Zhaoqing test site, they established an experimen-
tal backscattering model in which the backscattering was 
shown as a function of time using cubic polynomial. This 
study was taken into account while short listing the polari-
zation to be used. The spatial resolution in MRS mode for 
RISAT-1 is 18 m, while that of Formosat-2 is 8 m. As crop 
mapping cannot be determined accurately using single 
date image [19], temporal data were used. The temporal 
dates of RISAT-1 data were 27 June 2014 and 09 July 2014, 
while that of Formosat-2 were 10 August 2014 and 25 Sep-
tember 2014 as seen in Fig. 2. Ground truth was collected 
with the help of global positioning system (GPS) points. 
The survey dates were 19 and 20 October 2014. These data 
were used for both the training of supervised classification 
classifier as well as for testing. Of the total points collected, 
80% of the points were used for training, while 20% were 

Table 1  Sensor details of 
temporal images

Data Spatial resolution Swath Temporal 
resolu-
tion

Formosat-2 (Taiwan) Pan—2 m
Multispectral—8 m

24 km Daily

RISAT-1 (India) C Band (5.35 GHz)—1–50 m 10–225 km 25 days

Fig. 2  Temporal images used for study
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used for testing purposes. Supervised soft classification 
was carried on with the JAVA-based sub-pixel multi-spec-
tral image classifier (SMIC) tool with the PCM classifier and 
the similarity and dissimilarity distance norms. Three tem-
poral datasets were assembled using the four date images 
in combination of the microwave and optical bands. Data-
set one contained two microwave bands dated 27 June and 
09 July and one optical band dated 10 August. Dataset two 
had one microwave band dated 07 July and two optical 
bands dated 10 August and 25 September, while dataset 
three had all the four bands (refer Table 2). It was important 
to select the best date combination to achieve high accu-
racy. Three-day combination gave better results as com-
pared to single date image or two-date combination [32]. 
These datasets were constructed after the backscattering 
coefficients of the microwave data were calculated. NDVI 
index was calculated using optical images of Formosat-2. 

4  Methodology and approach

Bi-sensor approach was used to carry out the research. 
This was done to understand if data fusion for classifica-
tion would yield desired results. Methodology followed is 
presented in Fig. 3.

RISAT-1 images dated 27 June and 9 July 2014 were 
geometrically corrected to be in accordance with Formo-
sat-2 temporal images dated 10 August and 25 September 
2014. RISAT-1 images were processed to obtain backscat-
tering images using formula 16 mentioned above and 
resampled to 8 m to match the spatial resolution of For-
mosat-2. NDVI image was obtained from Formosat-2 tem-
poral images. The backscattered images and NDVI images 
were linearly stretched to obtain 8 bit images with pixel 
values ranging from 0 to 255. This was done as the SMIC 
(sub-pixel land cover mapping image classifier), a JAVA-
based image processing package [33] which supports 8 bit 
imagery was used for classification. The linear stretching 
would overcome the difference created by decibel values 
of backscattering images and NDVI values bringing uni-
formity in analysis.

4.1  Dataset generation

Three datasets were generated using temporal images. 
These datasets were obtained by stacking backscatter 
images and NDVI images in order of the date of acquisi-
tion of images. The stacking of these bands and the dates 
is as seen in Table 2.

The ground data which were utilized for the training 
and testing of sites were collected on 19 and 20 October 
2014 through field survey. These data were used to accu-
rately locate the pure pixels, i.e., to identify the paddy 
fields in the region of study. Pure pixels are needed for 
training as fields in India are closely situated and spectral 
mixing of signature may result in nonlinearity in classes. 
The growth cycle under study belongs to the kharif season 
which is monsoon dependent in India. Typically, it takes 
anywhere between 120 and 150 days for paddy to reach 
maturity. The collection of ground data was close to the 
late transplanted paddy, and hence, identification of this 
single class was carried out. The target class of late trans-
planted paddy was to be isolated from nearby paddy fields 
which were basically early transplanted paddy and nearing 
maturity.

Nearly 15 pure pixels from six different paddy field sites 
were used to carry out supervised kernel-based PCM using 
SMIC package. Different types of similarity and dissimilar-
ity based distance norm kernels were used with various 
values of weighted constant ‘m’ ranging from 1.5 to 3 for 
each kernel.

5  Results and discussion

Agricultural fields change temporally hence to classify 
these changes temporal images are used. As quantitative 
evaluation of the fields was not possible, the evaluation 

Table 2  Temporal datasets used for classification and analysis

RISAT-1 Formosat-2

27 June 
2014

09 July 2014 10 Aug 2014 25 Sept 2014

Dataset 1 ✓ ✓ ✓ ✓
Dataset 2 ✓ ✓ ✓
Dataset 3 ✓ ✓ ✓

RISAT-1 Data Formosat-2 Data 

Geometrical 
Correction 

Calculating 
Backscattering 

Coefficient 

Calculating 
NDVI 

Dataset 
Generation 

PCM Classifier 

Compare 
Outputs 

Training Data 
Similarity and 

Dissimilarity Norms 

Testing Data 

Selection of Best 
Norm and Dataset 

Fig. 3  Methodology adopted for paddy field mapping
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was done based on the membership values of PCM for 
varying values of ‘m.’ The fundamental of soft classifica-
tion which says inter-class membership variance should be 
more and intra-class membership variance should be low 
[34] was used considering factors like optimized weighted 
constant ‘m’, temporal combination of images and similar-
ity and dissimilarity-based distance norms.

Figures 4, 5 and 6 show the classified outcomes of data-
set 1, 2 and 3 for late transplanted paddy for optimized 
weighted constants as seen in Tables 3, 4 and 5, respectiv
ely.

The membership values for different testing sites were 
noted for target class (late transplanted paddy) and non-
target classes (early transplanted paddy and shallow 
water) for all the three datasets. The target and non-target 
classes selected were based on the temporal images used. 
Paddy fields are filled with water during the transplanta-
tion stage. This often leads to misclassification when class 
of shallow water is present in the study area resulting in 
similar backscattering values. The maximum membership 
variance for corresponding weighted constant will result 

in optimized weighted constant, whereas the maximum 
variance in membership for optimized weighted constants 
for different datasets will result in best temporal combina-
tion of dataset as nonlinearity was handled best for that 
combination of distance norm, temporal combination and 
weighted constant.

Tables 3, 4 and 5 clearly depict the membership values 
for unbiased testing sites for dataset 1, 2 and 3, respec-
tively. The optimized weighted constant for which the 
difference of membership values between the target and 
non-target sites is mentioned in the tables. For dataset 
1 with temporal images of June, July and August show 
that for optimized ‘m’ = 1.3, mean absolute difference and 
Manhattan distance norms yielded highest mean mem-
bership values for late transplanted paddy class of 253 
of all unbiased testing sites. These norms provided the 
maximum mean membership values for target class (refer 
Table 3). For dataset 2 (refer Table 4) with temporal images 
of July, August and September maximum mean member-
ship value of target class was observed for diagonal vari-
ance–covariance norm at 254 with optimized ‘m’ = 2.3.

Fig. 4  Late transplanted paddy extracted for dataset 1 using a Bray 
Curtis, b Canberra, c chessboard, d correlation, e cosine, f diago-
nal variance–covariance, g Euclidean, h mean absolute difference, 

i Manhattan, j median absolute difference, k normalized square 
Euclidean, l variance–covariance for optimized weighted constants



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:990 | https://doi.org/10.1007/s42452-020-2786-0

Whereas (refer Table 5) for dataset 3 which consists of 
all temporal images of June, July, August and Septem-
ber maximum mean membership value for target class 
calculated from unbiased sites was observed for vari-
ance–covariance norm at 253 where optimized ‘m’ was 2.1

Graphs shown in Fig. 7 are plotted for the difference 
between the membership values of late transplanted 
paddy and early transplanted paddy for datasets 1, 2 and 
3, respectively. Figure 8 represents the graphs for differ-
ence of membership values between late transplanted 
paddy and shallow water for 12 norms at various values 
of weighted constant. These differences are based on the 
8 bit classified images obtained using SMIC classifier. The 
average difference of unbiased sites is plotted against 
weighted constants ‘m.’

Table 6 gives an overview of the best combination of 
dataset, distance norm and corresponding optimized 
weighted constant for which the classification of late trans-
planted paddy yielded best statistical results.

6  Conclusions

A total of 12 similarity and dissimilarity norms were tested 
over 3 datasets with temporal resolution of 3 and 4 dates 
for better extraction of single class that is late transplanted 
paddy fields. It was observed that the weighted constant 
‘m’ played a significant role in suppressing non-target 
classes when single class classification was carried out. 
The suppression of non-target classes was not uniform as 

Fig. 5  Late transplanted paddy extracted for dataset 2 using a Bray 
Curtis, b Canberra, c chessboard, d correlation, e cosine, f diago-
nal variance–covariance, g Euclidean, h mean absolute difference, 

i Manhattan, j median absolute difference, k normalized square 
Euclidean, l variance–covariance for optimized weighted constants
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Fig. 6  Late transplanted paddy extracted for dataset 3 using a Bray 
Curtis, b Canberra, c chessboard, d correlation, e cosine, f diago-
nal variance–covariance, g Euclidean, h mean absolute difference, 

i Manhattan, j median absolute difference, k normalized square 
Euclidean, l variance–covariance for optimized weighted constants

Table 3  Results obtained for dataset 1, where A corresponds to the difference between the membership values of late transplant and early 
transplant, while B is that for late transplant and shallow water

Norms Membership value of target class 
at optimized ‘m’

Difference between membership 
values at non-target class

Optimized value of 
weighted constant 
‘m’

Bray Curtis 247 A = 108, B = 190 1.5
Canberra 249 A = 98, B = 204 1.5
Chessboard 250 A = 108, B = 181 1.5
Correlation 232 A = 242, B = 18 3
Cosine 237 A = 70, B = 209 2.7
Diagonal variance–covariance 252 A = 106, B = 173 2.3
Euclidean 251 A = 101, B = 172 2.1
Mean absolute difference 253 A = 120, B = 174 1.3
Manhattan 253 A = 120, B = 174 1.3
Median absolute difference 250 A = 108, B = 181 1.5
Normalized square Euclidean 247 A = 158, B = 68 3.0
Variance–covariance 251 A = 104, B = 172 2.3
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difference between the membership values of the target 
and non-target classes were uniform as microwave and 
optical images characteristics came into picture. In some 
cases, the difference between the membership values of 
late transplanted paddy and early transplanted paddy was 
maximum, while in few cases, the difference between late 
transplanted paddy and shallow water was maximum.

It was observed that the PCM classifier could identify 
and extract single class and suppress other classes and 
also solve the problem of mixed pixels to a larger extent 
when datasets were compared. Statistically, it was found 
that the dataset containing two dates of microwave data 
and one date of optical data produced best results for 
the norms mean absolute difference and Manhattan at 

Table 4  Results obtained for dataset 2, where A corresponds to the difference between the membership values of late transplant and early 
transplant, while B is that for late transplant and shallow water

Norms Membership value of target class 
at optimized ‘m’

Difference between membership 
values at non-target class

Optimized value of 
weighted constant ‘m’

Bray Curtis 247 A = 77, B = 212 1.7
Canberra 240 A = 76, B = 212 1.9
Chessboard 240 A = 80, B = 214 1.9
Correlation 250 A = 97, B = 198 2.3
Cosine 245 A = 77, B = 213 2.7
Diagonal variance–covariance 254 A = 104, B = 183 2.3
Euclidean 243 A = 75, B = 213 2.7
Mean absolute difference 246 A = 88, B = 212 1.7
Manhattan 246 A = 88, B = 212 1.7
Median absolute Difference 240 A = 80, B = 214 1.9
Normalized square Euclidean 247 A = 118, B = 62 3.0
Variance–covariance 254 A = 112, B = 103 1.9

Table 5  Results obtained for dataset 3, where A corresponds to the difference between the membership values of late transplant and early 
transplant, while B is that for late transplant and shallow water

Norms Membership value of target class 
at optimized ‘m’

Difference between membership 
values at non-target class

Optimized value of 
weighted constant ‘m’

Bray Curtis 243 A = 79, B = 213 1.7
Canberra 244 A = 75, B = 212 1.7
Chessboard 239 A = 79, B = 214 1.9
Correlation 251 A = 94, B = 236 2.1
Cosine 242 A = 72, B = 213 2.7
Diagonal variance–covariance 252 A = 104, B = 183 2.3
Euclidean 236 A = 73, B = 213 2.9
Mean absolute difference 242 A = 88, B = 213 1.7
Manhattan 242 A = 88, B = 213 1.7
Median absolute difference 245 A = 80, B = 214 1.7
Normalized square Euclidean 242 A = 123, B = 79 2.9
Variance–covariance 253 A = 114, B = 105 2.1
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Fig. 7  a, b, c Plot of difference between late transplanted and early 
transplanted paddy for all norms at different values of ’m’ for data-
sets 1, 2 and 3
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Fig. 8  a, b, c Plot of difference between late transplanted paddy 
and shallow river bed for all norms at different values of ’m’ for 
datasets 1, 2 and 3

Table 6  Selection of best dataset via optimized ’m’ and best norm/s

Optimized weighted con-
stant ‘m’

Best norm Difference between membership 
values of target and non-target 
classes

Dataset 1 1.3 Mean absolute difference, Manhattan 120
Dataset 2 2.3 Diagonal variance–covariance 104
Dataset 3 2.1 Variance–covariance 105
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weighted constant value ‘m = 1.3.’ However, visual inter-
pretation suggested that the dataset containing two 
dates of microwave data and two dates of optical data 
had better results for the norm variance–covariance at 
‘m = 2.1’ as seen in Figs. 4, 5 and 6.

It was thus concluded that the PCM classifier pro-
duces satisfactory results for single class extraction 
and also manages mixed pixels to suppress non-target 
classes for dataset containing more microwave temporal 
images than optical images. The noise observed in the 
classification images can be handled by applying speckle 
filter before the classification process. From the results 
obtained, it can be concluded that the use of multi-date 
microwave data when integrated with optical data pro-
duces better results as compared to the use of single 
date microwave data with optical data in temporal sce-
narios for crop identification and mapping.
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