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Abstract
The opposing requirements for the performance and reliability of a thermoelectric generator (TEG) are investigated with 
numerical finite element analysis simulations. The parameters that significantly influence the operational performance 
and structural reliability of a TEG are considered for simultaneous optimization. The design of experiments based response 
surface optimization methodology in conjunction with results from finite element analysis was employed to identify 
optimal parameters from the structural reliability and performance (power output and efficiency) perspectives. A high 
temperature bismuth telluride based TEG couple was used in the studies to demonstrate the general applicability of 
the methodology. The response surface methodology is found to be a robust technique that can expedite the process 
of geometry optimization of a TE device during the research and development phase of TEG devices fabricated from 
novel thermoelectric materials.
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Subscripts
avg	� Average
c	� Cold side
h	� Hot side
n	� n-type material
p	� p-type material

1  Introduction

Thermoelectric (TE) generation served as the most reliable 
source of electrical power and has been a preferred choice 
for powering space applications [1] where the reliability 
outweighs other performance criteria. Despite its success 
in the space applications and other niche applications for 
energy harvesting, the TE technology has not seen success 
in the terrestrial applications for large scale heat recovery 
and automobile applications. While power sources relying 
on TEG such as the radioisotope thermoelectric genera-
tors (RTG) employed in space applications [2, 3] operate 
under static conditions, the terrestrial applications typi-
cally need operation under dynamic conditions that sub-
ject the device to thermomechanical fatigue and subse-
quent failure [4]. Two major challenges in developing the 
new TE materials for most applications is the undesirably 
long time associated with the material development to 
commercialization stage [5] and device reliability [4, 6]. 
Currently the time it takes for a new TE material from the 
development phase to a successful application demonstra-
tion phase is about a decade which is typically followed 
by a few additional years for commercialization for device 
adoption. While the development of new TE materials with 
high figure of merit (ZT) is essential to the promotion of 
this technology, linking the material properties to device 
level performance is a key to the successful commerciali-
zation and widespread adoption of this technology [7, 8]. 
One of the most challenging issues often encountered 
during demonstrations of TEG devices developed from 
new materials is the device failure. The thermomechani-
cal stresses that arise due to thermal expansion mismatch 
between various materials of a TEG typically lead to failure 
in devices designed for peak performance. The success of 
a new TE material is materialized only when structurally 
reliable devices can be made with that material and thus 
the development of successful TE devices needs geom-
etry optimization from the performance and reliability 
perspectives. The necessity for an integrated structural 
and performance optimization in achieving truly optimal 
design is also emphasized in recent literature [9, 10]. There 
are several parameters that influence the performance and 
structural reliability of a TEG device. The geometry require-
ments for performance often contradict the requirements 
for reliability which complicates the design optimization of 

TEG. In one of our previous studies [11] we demonstrated 
these opposing geometrical requirements for the perfor-
mance and reliability. The optimized TEG configurations 
must have a low internal resistance for better performance 
and reduced thermomechanical stresses for enhanced 
reliability.

Several studies in literature were focused on optimizing 
the performance of a TEG for terrestrial applications such 
as automotive heat recovery using analytical modeling. 
Hendricks et al. [12] demonstrated the complex interac-
tion between thermal system performance and thermo-
electric device optimization and focused on optimizing 
the system level performance of the TEG integrated with 
heat exchanger for vehicle energy recovery. Crane et al. 
[13] studies optimized the system level performance inte-
grated with heat exchanger and focused on designs to 
maximize performance of a TEG with a dynamic thermal 
power source such as automobile exhaust. Kumar et al. 
[14] work focused on optimizing a TEG for automobile 
waste heat recovery considering the temperature depend-
ent material properties and concluded that careful selec-
tion of leg height and area ratio (An/Ap) are important for 
optimal power and material requirements. Montecucco 
et al. [15] characterized the performance of TEGs with con-
stant thermal power in a waste heat application where the 
maximum available heat is limited at any time.

Apart from performance some literature studies 
focused on investigating the operational stresses in TEGs 
by numerical simulations. Li et al. [16] studied the thermal 
stresses in a segmented thermoelectric uni-couple sub-
jected to thermal cyclic loading by finite element method 
(FEM) and concluded that a functionally graded interface 
layer could improve reliability. Clin et al. [17] evaluated the 
effect of leg length, boundary conditions, and soldering 
alloys on a bismuth telluride module and concluded that 
the boundary conditions on the ceramic substrate and 
mechanical strength of the soldering alloys significantly 
affect stresses in the TEG components. Turenne et  al. 
[18] simulated the steady state operational behavior of 
TE modules using FEA and concluded that thin modules 
typically produce very high stress levels at leg corners and 
the end constraints that subject the module to compres-
sive stress could reduce failure. Studies also showed that 
the leg geometry influences stresses and performance of 
a TEG. Al-Merbati et al. [19] examined the influence of pin 
geometry on the stress levels in a TEG device subject to 
thermal cyclic loading and concluded that geometric con-
figuration has significant influence on the stress levels and 
configurations with parallel pins could result in lowest von 
Mises stresses.

Recently, some studies also focused on evaluating the 
effects of geometry on both performance and stresses in a 
TEG. Erturun et al. [20] investigated the effect of various leg 
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geometries on thermo-mechanical and power generation 
performance of thermoelectric devices, and concluded 
that cylindrical legs could reduce the peak equivalent 
stresses and varying thermoelectric leg geometry can be 
considered as a factor for reducing overall stresses in a TEG 
module. Bakhtiaryfard et al. [21] considered design modifi-
cation to elements to reduce thermal stresses in the mod-
ules. Fan et al. [22, 23] studied the influence of geometric 
dimensions, number of couples on the performance and 
mechanical reliability of annular TEGs. Their study con-
cluded that the number of couples has little influence on 
the stresses whereas the leg length and angle ratio has 
significant influence on the performance and stresses of 
annular TEG.

While much of the cited literature focused on optimiz-
ing the performance or reducing the thermomechanical 
stresses in a TEG the studies focused on integrated struc-
tural reliability and performance optimization of a TEG are 
scarce. Some studies considered this aspect but they did 
not define reliability pertinent to TEGs. They focused on 
reducing the equivalent or von Mises stresses which usu-
ally do not correlate to the failure of brittle TE materials. 
For instance, Jia et al. [24] used 3D finite element models to 
simulate the TE and mechanical behaviors of segmented 
thermoelectric devices and determined optimal operating 
conditions for balanced TE and mechanical performances. 
Erturun et al. [25] studied the variation of performance 
and stresses with leg spacing and dimensions using design 
of experiments approach and demonstrated parameter 
selection for a target performance. Their study did not 
optimize the stresses or relate stresses to reliability which 
is necessary to estimate the tradeoff in performance while 
arriving at truly optimal and reliable TEG configurations. In 
our previous study [26] we addressed the challenge of link-
ing the TEG leg stresses to reliability using statistical brittle 
material failure theory and demonstrated that the failure 
probability of TEG approaches zero at a certain length or 
aspect ratio (the ratio of length to area L/A of p- and n- 
type legs). Any improvement beyond that limit will only 
diminish the performance, especially the power output, 
and it is necessary to have insights on such aspect ratios to 
limit the tradeoff in the performance of an optimized TEG 
configuration. In that study we also investigated the influ-
ence of geometry, metallization and operating conditions 
on the reliability of a TEG and identified the parameters 
that significantly influence the reliability of a TEG. In the 
present study we focused on the simultaneous optimiza-
tion of the parameters critical to the performance and reli-
ability of a TEG. The optimization of multiple responses 
each of which in turn depend on multiple independent 
parameters was carried out using design of experiments 
(DOE) based response surface methodology (RSM). The 
DOE based approach to study the influence of geometric 

parameters on the performance and stresses in a TEG was 
considered in the study by Erturn et al. [25] that used RSM 
and artificial neural networks (ANN) techniques. Recently, 
Kishore et al. [27] used Taguchi and ANOVA techniques to 
optimize the performance of a TEG with external load and 
heat exchanger parameters.

In this study we investigated the effect of leg aspect 
ratios and metallization thickness on the performance and 
reliability of a TEG. The performance and thermomechan-
ical stresses that affect the reliability of a TEG are simu-
lated using finite element analysis (FEA) and the reliabil-
ity under simulated stresses is quantified using statistical 
brittle material reliability theory and procedure discussed 
our previous article [24]. The DOE based RSM with face-
centered central composite design (CCD) was used to fit 
second order quadratic regression models for the power 
output (P), efficiency (η), the probability-of-failure (Pf) and 
their simultaneous optimization. The factors and ranges 
for the CCD were chosen based on a two-level full-factorial 
effects screening study as well as the insights from the 
one-factor-at-a-time analysis conducted in our previous 
study [26].

2 � Single couple finite element model

Numerical simulations were carried out to simulate the 
performance and the thermomechanical stresses of a sin-
gle couple TEG using the commercial FEA software ANSYS 
[28]. The probability-of-failure (Reliability, R = 1 − Pf) was 
estimated using a macro implemented within ANSYS via 
ANSYS Parametric Design Language (APDL) whose details 
are presented in our previous work [26]. The thermoelec-
tric and subsequent thermomechanical simulations were 
sequentially performed in ANSYS where the thermoelec-
tric performance is solved first using SOLID226 elements 
with only TEMP and VOLT degrees of freedom (DOF), and 
the resulting temperatures distributions are later imposed 
on a structural model with SOLID186 elements that have 
only displacement DOFs (UX, UY, UZ). Such a sequential 
analysis was found to be computationally efficient com-
pared to a coupled-field analysis with SOLID226 elements 
with all 5 active DOF and both thermoelectric and struc-
tural boundary conditions imposed simultaneously.

The single couple FEA model is similar to the fixed case 
TEG couple considered in [24]. Figure 1 illustrates the 
details of the single couple 3-D FEA model (front view) 
with typical square section legs. The couple consists of 
p- and n-type TE elements thermally connected in par-
allel and electrically in series joined by copper intercon-
nects (ICs). A constant property couple made of p- and 
n-type bismuth-telluride based materials with the ther-
moelectric properties [29] at an average temperature of 
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~ 175 °C is considered in all the analyses. The temperature 
dependence of material properties is not considered in 
the simulation as the main intent of the study is to inves-
tigate the influence of geometrical parameters. Inclusion 
of temperature dependence may overshadow the minor 
influences from some geometrical parameters. The error 
in the performance parameters (power and efficiency) due 
to the temperature independent assumption within the 
temperature range 100–250 °C considered in this work was 
verified to be less than 10%, which is in good agreement 
with the literature [29]. The constant property assumption 
is also justified per recommendations for temperature 
dependent material property consideration in [30]. The 
error in structural performance (failure probability) shall 
be negligible as there is little variation in the mechanical 
properties of the ceramic and metallic TEG materials in the 
temperature range considered in this study. A diffusion 
barrier made of nickel (Ni) on the hot-side, typically found 
in medium (250 to 650 °C) to high temperature (> 650 °C) 
couples is include in the models. The copper ICs at the bot-
tom and top are assumed to be bonded to ceramic sub-
strates made of alumina. The bonding layer (solder etc.) at 
the interface of ICs and different TE materials are not con-
sidered and instead a thicker diffusion barrier is modeled. 
To investigate the potential for plastic strains in metalliza-
tion, the Cu ICs and Ni barrier are modeled as elastoplastic 
materials with bilinear isotropic hardening behavior. The 
material properties and constitutive models of the single 
couple TEG models considered in this work are similar to 

those considered in [11, 26]. A load resistance between 
the end terminals is specified in the single couple models 
using a CIRCU124 element. The details of the TE materials, 
metallization and the substrate and the thermoelectric 
and mechanical properties of all the materials used in the 
FEA are presented in [26].

For the thermal boundary conditions, the single cou-
ple models are specified with a hot-side temperature 
of 250 °C and a cold-side temperature of 100 °C which 
results in a ΔT of 150 °C and an average temperature of 
175 °C. The structural boundary conditions are specified 
at the bottom surface of the cold-side substrate. All the 
bottom surface nodes are constrained in vertical direc-
tion (UY = 0) and the minimal in-plane boundary condi-
tions (UX = UZ = 0 at back left corner node and UZ = 0 for 
back right corner node) are specified at the bottom sur-
face of the cold-side substrate to avoid rigid body rota-
tion in the simulations. A reference temperature (TREF 
in ANSYS) that is the average of TEG hot and cold-side 
temperatures is specified in the models. Once the ther-
momechanical stresses are simulated, the reliability of 
the brittle TE materials are estimated using the Weibull 
statistical parameters listed in Table 1. The derivation and 
source data for these parameters are presented in [11].

3 � Design of experiments (DOE) approach

DOE is a systematic procedure that relies on mathemati-
cal and statistical methods to analyze and/or optimize 
the output (referred as responses) of processes that 
depend on one or more independent input variables 
(referred to as factors). DOE has significant advantage 
over traditional one-factor-at-a-time analysis as carefully 
designed experiments could provide invaluable insights 
on the effects of varying inputs on the output param-
eters with limited number of experiments thereby saving 
substantial amount of time and resources during a new 
product or process development. The DOE implementa-
tions typically require personnel with expertise in the 
concerned product or process development in order to 
yield effective results. Optimization using DOE approach 
is usually a three-step process;
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Fig. 1   FEA model configuration of a single couple TEG

Table 1   Weibull parameters 
used in the component 
reliability estimations with FEA

Material Weibull characteristic 
strength, σθ (MPa)

Weibull modulus, m 
(Unitless)

Weibull material scale 
parameter, σ0 [Pa 
(m3)1/m]

p-type bismuth telluride 80 10 9,389,156
n-type bismuth telluride 80 10 9,389,156
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•	 First is to identify the input parameters (factors) which 
significantly influence the desired output (response). 
This step is called effects screening.

•	 The second step involves fitting empirical models for 
studying the ranges (levels) for the critical factors to 
arrive at the combination of factor levels that optimize 
the desired responses.

•	 The third step typically involves confirmatory experi-
ments.

The first step in the DOE is usually accomplished by 
two-level fractional factorial, full-factorial or Plackett–Bur-
man designs. Insights and limitations of the product or 
process under development will assist in selecting the 
level of various factors during this step. The second step 
is accomplished by multivariate optimization techniques 
such as response surface methodology (RSM) which 
includes central composite and Box–Behnken designs, 
robust parameter designs such as Taguchi Arrays, mixture 
designs and also higher level (> 2) full-factorial designs. 
This step relies on fitting empirical relations that satisfac-
tory describe the process in a limited design space (in the 
vicinity of optimum conditions) arrived using step one. In 
this work we estimated the significance of inputs using 
two level full factorial designs and subsequently used RSM 
for simultaneous optimization of multiple responses with 
contradicting input requirements (factor levels).

3.1 � Factorial design for effects screening

Compared to the traditional one-factor-at-a-time approach, 
the factorial designs provide valuable information on the 
significance of various input parameters with a limited num-
ber of experiments or simulations. In addition to the main 
effects typically obtained from the one-variable-at-a-time 
approach (where all other variables are kept constant), the 
factorial designs provide interaction effects as an added 
advantage [31]. In our previous article we considered the 
effect of various input parameters on the reliability of a 
TEG using one-factor-at-a-time approach that necessitated 
hundreds of simulations. Despite knowing the influence 
of a specific parameter, optimization of a design with such 
approach is cumbersome as the relative influence of each 
parameter on the desired response is not quantified. In this 
work we studied the effect of similar parameters for their 
significance as well as quantified their influence using two-
level full factorial designs. A full-factorial design with ‘n’ fac-
tors at two levels requires 2n simulations. For screening the 
effect of 6 variables in the current study we conducted a 
total of 26 = 64 simulations. The full-factorial designs were 
run to obtain the main, two-way, and higher order interac-
tion effects when necessary. Sometimes, fractional factorial 
simulations are sufficient to provide most of the main and 

two way interaction effects [31]. The parameters (factors) 
studied for screening are the leg height, the p-leg area, the 
n-leg area, leg spacing (d), diffusion barrier thickness, and 
copper interconnect thickness. Tables 2 and 3 present the 
factors and their levels used in the screening effects study. 
Two sets are analyzed during the screening process to obtain 
a better understanding on the contribution of factors and 
their interactions, especially the leg lengths and metalliza-
tion thicknesses, as discussed in the results section.

The factor levels for the effects screening simulations are 
generally chosen based on the prior knowledge of the sys-
tem or process to avoid the real-time limitations of design 
and fabrication. Such a selection provides better insights 
on the contribution of the factor on a desired response 
compared to randomly varying levels in a wide range. For 
instance the factor levels for the widths of p- and n-legs are 
chosen such that the cross section area of p-leg is always 
greater than or equal to the n-leg area. This is based on the 
knowledge that for a TEG designed for optimal efficiency 
or power density the ratio An/Ap should be 0.81 and 0.88 
according to the Eqs. (1) and (2), respectively. Also, in order 
to avoid significant deviation from the square cross sec-
tion, the widths are not significantly varied from the depths 
(5 mm for both legs).

Table 2   Factors and levels considered in the 2-level full-factorial 
screening analysis set #1

Factor (−) Low level 
(mm)

(+) High 
level 
(mm)

Leg length (L) 2.5 7.5
p-leg width (Wp) 5 6.2
n-leg width (Wn) 4 5
Leg spacing (D) 1 4
Cu interconnect thickness (tIC) 0.2 1
Diffusion barrier thickness (tBar) 0.1 1

Table 3   Factors and levels considered in the 2-level full-factorial 
screening analysis set #2

Factor (−) Low level 
(mm)

(+) High 
level 
(mm)

Leg Length (L) 5 10
p-leg width (Wp) 5 6.2
n-leg width (Wn) 4 5
Leg spacing (D) 1 4
Cu interconnect thickness (tIC) 0.2 1
Diffusion Barrier thickness (tBar) 0.05 1
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The processing conditions (reference state) and the 
external compressive load that were found to influence 
the structural reliability in our previous study were not 
studied and are kept constant in the simulations. Inclusion 
of those two additional variables would have required 256 
runs in a full-factorial design simulation. With the insights 
from our previous study, the stress frees state (TREF in 
ANSYS) is considered as the average operating tempera-
ture and a constant compressive load of 3 MPa was applied 
on the top substrate.

3.2 � Response surface methodology

Response surface methodology (RSM) is a collection of 
mathematical and statistical techniques employed for 
modeling and analysis of problems in which the desired 
response(s) are influenced by several variables and the 
objective is to optimize those responses [31]. RSM typically 
involves fitting empirical models using regression models. 
To start with RSM, a first order model as described by Eq. (3) 
is usually fit in some region of independent variables which 
provides a sense of direction towards the optimum condi-
tions. Then, using the method of steepest ascent (procedure 
to move in the direction of maximum increase in response) 
or method of steepest descent if minimization is desired), 
the vicinity of optimum condition/s could be determined.

where y is the desired response, βi are the regression coef-
ficients, xi are the independent variables and ε is a random 
error.

Once the vicinity of optimum conditions is found, the 
optimum conditions are usually determined by fitting 
more precise higher order models such as the second 
order response surface model described by Eq. (4). For 
most cases such a second order response is adequate to 
satisfactorily capture any curvature in the responses and 
in some limited cases a third order model involving cubit 
terms may be needed to describe the nonlinearity associ-
ated with the response [32].
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While a response surface models could be fit to sev-
eral DOE designs including the factorial designs, there are 
specific designs called response surface designs (RSD) for 

fitting the response surface that are far more superior than 
fitting surfaces to factorial designs. The most widely used 
RSDs are the Box–Behnken Design and the Central Com-
posite Design (CCD). In this work we employed CCD with 
face-centered axial (star) points to fit the surfaces for three 
desired responses.

4 � Results and discussion

4.1 � Effects screening with 2k full‑factorial runs

As discussed in the “Factorial Design” section, full factorial 
designs with six factors at two levels listed in Table 1 are ini-
tially simulated to understand the effect of those factors on 
each of the three desired responses for a TEG i.e., the power 
output, thermal efficiency, and the probability-of-failure (Pf).

One of the significant findings from our previous one-
factor-at-a time studies [26] was the difference in perfor-
mance, stress distributions, and peak stresses in the metal-
lization and TE legs at different leg lengths. Short lengths 
are preferred for high power and longer legs are preferred 
for efficiency and reliability for typical applications where 
external load resistance is usually higher than the internal 
resistance of TEG system. Once the designs deviate from 
optimum performance aspect ratios (L/A) due to variation 
in length, the relative drop in power is significantly higher 
compared to efficiency initially [11]. Hence the contribu-
tion of leg length to performance parameters power and 
efficiency could differ at shorter length ranges (2–5 mm) 
compared to longer ranges (5–10 mm). Also, at relatively 
short lengths (~ 2.5 mm) compared to metallization thick-
ness (0.25–1 mm), significant high stresses were observed 
in the metallization that ultimately resulted in plastic 
strains especially in the diffusion barrier material. Despite 
low strains (≪ 1%) such designs could lead to metallization 
failure under thermal cycling (fatigue) in application such 
as energy recovery from automobile exhaust. At relatively 
longer leg lengths, the metallization were free of plastic 
strains and the effect of their thickness was pronounced. 
To analyze the aforementioned differences in influences 
at different length ranges, an additional screening set of 
simulations with factors and levels listed in Table 2 were 
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also conducted. Alternatively, one could consider a 3-level 
full or fractional factorial designs or a combined (some 
factors at 2-level and other at higher levels) which could 
necessitate a higher number of simulations. The results 
data (P, η, and Pf) from both the effect screening simula-
tion sets are presented in Tables 14 and 15 included in the 
supplemental material.

To estimate the significance of factors and their interac-
tions on the desired responses, the results from the DOE 
full-factorial screening data sets were analyzed with com-
mercial statistical modeling and analysis software JMP 
[33]. The least squares fit overall effect summary which lists 
the minimum p value among the p values for any effect 

(from multiple responses) based on the results from Set #1 
and Set #2 factorial runs are summarized in Tables 4 and 
5 respectively. In these tables the Source term indicates 
the main or interaction effect and the Log Worth statistic 
(defined as −log(p value)) represents the significance of 
a main or interactions effect. A LogWorth greater than 2 
(indicated by the blue dashed line) is considered statisti-
cally significant for inclusion of a factor at 1% significance 
level. The probability (p value) listed in the tables is the 
minimum for that source term from the three responses 
studied. The effect summary from both the Tables 4 and 5 
indicate that ten of the of the regression model terms from 
Set #1 and 11 terms from Set #2 are significant at α = 0.01 
level (LogWorth > 2). These terms are primarily the main 
and interaction effects of the factors; L, Wp, Wn, tIC, tBar.

The summary of fit, analysis of variance (ANOVA) and 
parameter estimates for all the three individual responses; 
power, efficiency and probability-of-failure, are included in 
the supplemental material (Tables 16 through 21). In these 
tables the terms R2 represents the adequacy of fitted mod-
els and a value close to 1.0 indicates that the models fit the 
data well. The adjusted R2 represents the impact of chang-
ing the number of model terms. The parameter estimates 
represent the coefficients of the regression fits to the data. 
These parameter estimates are shown in coded terms (low 
level − 1 and high level + 1) to provide insights on the mag-
nitude of effect for the main and interaction terms. The 
F-Ratio is the test statistic used to determine whether any 
term in the model influences the response. A large F-Ratio 
indicates statistical significance. The probability (Prob > F) 
in the ANOVA tables (sometimes referred as the p value) 
less than or equal to the significance level (α = 0.05) indi-
cates the fitted model appropriately describes the vari-
ation in response. Similarly, the probability (Prob > |t|) in 
the parameter estimates tables indicates that the model 
term significantly contributes to the response (when 
highlighted).

From the overall summary in Tables 4, 5 and the indi-
vidual response summary Tables 16 through 21 included 
in the supplementary material, it is evident that the p and 
n-leg lengths, areas (i.e., widths Wp and Wn with the same 
depth), and the metallization thicknesses (tIC and tBar) are 
the influential factors for performance and reliability. It is 
important to note that apart from the main effects, the 
interactions are also found to be significant. While the 
interaction between the metallization thicknesses i.e., the 
interconnect and diffusion barrier thickness combination 
is significant for reliability (tIC * tBar in Tables 20, 21 in the 
supplemental material), the interaction between length 
and width (or area) turned out to be significant for power 
and efficiency as one would expect. The relative contribu-
tion of each of the main and interaction effects are sum-
marized in Table 6. These percentage contributions are the 

Table 4   Set #1 results least square fit summary table

^Beside “P value” column values denote effects with containing 
effects above them

Table 5   Set #2 results least square fit summary table

^Beside “P value” column values denote effects with containing 
effects above them
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rough estimates obtained from the relative magnitudes 
of sum of the squares of each factor or interaction. The 
summary Tables 4 and 5 in conjunction with the Parameter 
Estimates Tables 16 through 21 provided in the supple-
mental material could be used to confirm the magnitude 
of these effects. The difference in percentage contributions 
estimated from the data sets #1 and #2 (from Tables 4, 5 
respectively) demonstrate the importance of choosing 
appropriate levels even during screening. Random selec-
tion could lead to incorrect conclusions on the choice of 
factors and levels required for subsequent optimization 
design space.

An interesting observation is that despite differences in 
the percentage contributions from the datasets, the influ-
ence trends of main and interaction effects turned out to be 
the same for all the responses except for the effect of length 
on efficiency. The parameter estimate tables presented 
in supplemental material (Tables 16 through 21) lists the 
regression coefficients which provide insights on the trends 
related to each factor. A positive estimate indicates that the 
desired response increases with the factor and vice versa. 
If we consider leg length (L), the estimate for power and 
probability of failure (Pf) are –ve from both sets indicating 
the output power and probability of failure decreases with 
leg length. On the other hand, the L estimate for efficiency 
is +ve from set #1 (which includes short length) indicating 
efficiency increases with length and turned out to be −ve 

from set #2 contradicting the observation from set#1. Such 
results typically indicate curvatures in response which can-
not be captured by a 2-level factorial design. It is important 
to include the levels of factors that produce such peaks to 
optimize responses in subsequent higher order analysis. The 
existence of curvature in efficiency response could be attrib-
uted to the ratio of internal to external load resistance (R/R0) 
which varies with leg length. From the established theory 
for performance optimization we know that a peak power 
is obtained at matching load resistance R/R0 = 1.0, whereas 
the peak efficiency is attained at R/R0 = √(1 + ZT) where ZT 
is the couple figure-of-merit.

4.2 � Response surface analysis

The effect screening analyses presented in the previ-
ous section indicated that except for the leg distance, 
the other 5 out the 6 factors considered are significant 
for either performance or reliability. However, a careful 
analysis of the parameter estimates concludes those five 
factors could be reduced to three by utilizing the inter-
action effect between the factors. For instance instead of 
varying Wp and Wn separately, the ratio Wn/Wp could be 
varied based on the requirements for optimal power and 
efficiency described by Eqs. (1) and (2). Similarly the net 
effect of diffusion barrier and interconnect thickness could 
be captured by varying the ratio tBar/tIC below and above 

Table 6   Percentage 
contribution of terms based 
on the results from Set #1 and 
Set #2

Source From set #1 results data From set #2 results data

Power [W] (%) Efficiency (%) Pf (%) Power [W] (%) Efficiency (%) Pf (%)

L 98 91 61.2 95 86 13.2
Wp 1 1 1.6 2 2 0.0
Wn 1 1 0.0 2 2 0.0
d 0 0 0.0 0 0 0.0
tIC 0 0 8.8 0 0 20.8
tBar 0 0 8.7 0 0 23.0
L * Wp 0 4 1.3 0 5 0.0
L * Wn 0 3 0.0 0 5 0.0
L * d 0 0 0.0 0 0 0.0
L * tIC 0 0 1.3 0 0 10.1
L * tBar 0 0 1.0 0 0 10.9
Wp * Wn 0 0 0.0 0 1 0.0
Wp * d 0 0 0.1 0 0 0.0
Wp * tIC 0 0 0.4 0 0 0.0
Wp * tBar 0 0 0.1 0 0 0.0
Wn * d 0 0 0.0 0 0 0.0
Wn * tIC 0 0 0.0 0 0 0.0
Wn * tBar 0 0 0.1 0 0 0.0
d * tIC 0 0 0.7 0 0 0.1
d * tBar 0 0 0.9 0 0 0.0
tIC * tBar 0 0 13.8 0 0 21.8
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1.0. Such a variation implicitly captures the effect of both 
parameters and simplifies the optimization process. In this 
work we achieved the variability of Wp/Wn and tBar/tIC by 
keeping the Wn and tIC constant and then varying only Wp 
and tBar respectively.

A face-centered central composite design with eight 
cube points, one center point, six axial points with no 
replicates requiring 15 total runs was used to obtain the 
empirical relations that describe the desired responses 
accurately in the domain of interest for optimal factors. 
Table  7 presents the factors and levels considered for 
response surface analysis. Because of the face-centered 
cube design where the axial or star point lie at the center 
of the cube faces, each factor was evaluated at three levels 
as presented in Table 8.

The fitted surfaces for the response power, efficiency 
and probability of failure in terms of uncoded factors are 
described by Eqs. (5) (6) and (7) respectively. The creation 

of quadratic response surface regression models with 
least-square fitting method and the analyses of the fit-
ted response surfaces were carried out using the statisti-
cal analysis software JMP. The surface plots of predicted 
responses by the RSM models are presented in Fig. 2. It is 
evident from these response contours that the power and 
efficiency vary with leg length and width, with length hav-
ing significant influence. On the other hand, all the three 
factors (leg length, width and barrier thickness) have sig-
nificant effect on the probability of failure.

The overall effects summary which lists the minimum 
p value among the p values for any effect (from multi-
ple responses) is presented in Table 9. The least-square 

(5)

P = 0.27164 − 0.064242L + 0.02696Wp − 0.00012tBar

+ 0.003955L2 − 0.001531W2

p
0.00023tBar2

+ 0.000358L ×Wp + 0.000000L × tBar

+ 0.000000Wp × tBar

(6)

� = 0.02954 + 0.009667L + 0.000477Wp − 0.000046tBar

− 0.001231L2 − 0.000291W2

p
+ 0.000091tBar2

+ 0.000536L ×Wp + 0.000000L × tBar

− 0.000000Wp × tBar

(7)

Pf = 0.980 − 0.3783L − 0.054Wp + 0.342tBar

+ 0.06841L2 + 0.0255W2

p
− 0.012tBar2

− 0.04522L ×Wp − 0.0987L × tBar

+ 0.0256Wp × tBar

Table 7   Factors and levels for the central composite design (CCD)

a Varied with Wn kept constant at 5  mm such that Wn/Wp varies 
from 0.81 to 1
b Varied with tIC kept constant at 0.25 mm such that tBar/tIC varies 
from 0.2 to 1.8

Factor (−) Low level (mm) (+) High 
level 
(mm)

Leg length (L) 2.5 5
p-leg width (Wp)a 5 6.2
Diffusion barrier thickness 

(tBar)b
0.05 0.45

Table 8   Required 
combinations of factors and 
levels for face-centered CCD

Run # Pattern L (mm) Wp (mm) tBar (mm) Power (W) Efficiency (%) Pf (%)

1 −−− 2.5 5 0.05 0.237 4.78 27
2 −−+ 2.5 5 0.45 0.237 4.78 36
3 −+− 2.5 6.2 0.05 0.250 4.61 42
4 −++ 2.5 6.2 0.45 0.250 4.61 53
5 +−− 5 5 0.05 0.155 5.56 2
6 +−+ 5 5 0.45 0.155 5.56 2
7 ++− 5 6.2 0.05 0.169 5.55 4
8 +++ 5 6.2 0.45 0.169 5.55 4
9 a00 2.5 5.6 0.25 0.244 4.70 38
10 A00 5 5.6 0.25 0.162 5.57 3
11 0a0 3.75 5 0.25 0.189 5.36 8
12 0A0 3.75 6.2 0.25 0.203 5.27 14
13 00a 3.75 5.6 0.05 0.197 5.33 9
14 00A 3.75 5.6 0.45 0.197 5.33 11
15 000 3.75 5.6 0.25 0.197 5.33 10
Min 0.155 4.61 2
Max 0.250 5.57 53
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fits, ANOVA, and parameter estimates of the three fitted 
responses power, efficiency and probability of failure are 

presented in Tables 10, 11 and 12 respectively. The effect 
summary presented in Table 9 shows that seven of the 
quadratic model terms are significant at α = 0.01 level 
(LogWorth > 2). The fit summary presented in Tables 11, 
12 and 13 show that the R2 and adjusted R2 (represents 
the impact of changing the number of model terms) for all 
the responses are greater than 0.99. R2 represents the ade-
quacy of fitted models and a value close to 1.0 indicates 
that the models fit the data well. The parameter estimates 
that represent the coefficients of the quadratic regression 
equations are also presented in the Tables 10, 11 and 12. 
These parameter estimates are shown in coded terms 
(low level -1 and high level +1) to provide insights on the 

Fig. 2   Response surface plots for Power (top row), Efficiency (middle row) and Probability of Failure (bottom row) with one of the factors 
kept constant at a level

Table 9   RSM effects summary

^Beside “P value” column values denote effects with containing 
effects above them
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magnitude of effect for the main and interaction terms. 
The coefficients in uncoded terms as shown in Eqs. (5)–(7) 
thus differ from those presented in the tables. The F-Ratio 
is the test statistic used to determine whether any term 
in the model influence the response. A large F-Ratio indi-
cates statistical significance. The probability (Prob > F) in 
the ANOVA tables (sometimes referred as the p value) less 
than or equal to the significance level (α = 0.05) indicates 
the fitted model appropriately describes the variation 
in response. Similarly, the probability (Prob > |t|) in the 
parameter estimates tables indicates that the model term 
significantly contributes to the response.

4.3 � Simultaneous optimization of multiple 
responses

The results from the screening studies showed that several 
factors influence the desired responses; hence, it is neces-
sary to simultaneously optimize all the desired responses 
for the choice of factors. Simultaneous optimization of 
multiple responses that depend on multiple factors is 
not an easy procedure. Various options are available for 

simultaneous optimization of multiple responses depend-
ing on the number of factors and responses. When there 
are few factor and responses, straightforward techniques 
such as contour plot overly could be used where one 
could arrive at optimal conditions by visually examining 
the responses under variation of one or two factors with 
others kept at constant levels. This method suffers from 
tediousness when there are more factors and responses 
as it requires trial and error approach to determine which 
factors to hold constant and at what levels for the best 
view of a response surface.

Another technique is to formulate the problem as a 
constrained optimization problem and solve those using 
nonlinear programming methods and numerical optimi-
zation algorithms. A popular approach to optimization 
of multiple responses is to use simultaneous optimiza-
tion technique that makes use of desirability functions. 
This technique was popularized by Derringer and Suich 
[34]. Here the approach is to convert each response yi 
into an individual desirability function di that varies from 
0 to 1 and then arrive at factors that maximize the overall 
desirability (D) that is defined as the geometric mean of 

Table 10   Summary of fit, ANOVA and parameter estimates for power

*Beside “Prob>|t|” column values (whenever less than the chosen significance level α = 0.05) indicates that model term is significant. Prob-
abilities less than 0.01% are defaulted to 0.01%

Summary of fit—power

RSquare 0.999992
RSquare Adj 0.999978
Root mean square error 0.000163
Mean of response 0.200596
Observations (or sum wgts) 15

Anova

Source DF Sum of squares Mean square F ratio

Model 9 0.01714691 0.001905 71560.41
Error 5 0.00000013 2.662e−8 Prob > F
C. Total 14 0.01714704 < .0001*

Parameter estimates

Term Estimate SE t Ratio Prob > |t|

Intercept 0.1968366 8.77e−5 2244.4 < .0001*
L − 0.040717 5.16e−5 − 789.1 < .0001*
Wp 0.0066948 5.16e−5 129.75 < .0001*
tBar 0 5.16e−5 0.00 1.0000
L * Wp 0.0002683 5.769e−5 4.65 0.0056*
L * tBar 0 5.769e−5 0.00 1.0000
Wp * tBar 0 5.769e−5 0.00 1.0000
L * L 0.0061802 0.000102 60.74 < .0001*
Wp * Wp − 0.000551 0.000102 −5.41 0.0029*
tBar * tBar 9.2222e−6 0.000102 0.09 0.9313
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individual desirability functions as presented by Eq. (8) for 
‘m’ responses. If the response yi is at its target, then di = 1 
and if the response is outside an acceptable region, then 
di = 0. The emphasis on being close to a desired target 
value with desirability function could also be varied by 
specifying weights to the desirability functions [29–31].

We used this desirability function approach to simul-
taneously optimize the power, efficiency and reliability 
of a TEG using JMP software. Figure 3 presents a case 
of optimized solution (maximized power, efficiency and 
minimized Pf) under the constraints specified in Eq. (9). 
This is a case where high reliability (Pf ≤ 5%) is desired. 
The maximized overall desirability D for this case is 
about 0.91and the factor level settings of leg length, 
P-leg width and barrier layer thickness for this optimal 
design are 4.1 mm. 5.12 mm and 0.05 mm respectively. 
Several other factor combinations could also satisfy the 
constraints specified in Eq. (9) but the overall desirability 
obtained with such other combinations will be less than 

(8)D = (d1 × d2 ×⋯ × dm)
1

m

or equal to the maximized desirability 0.91. For instance, 
the unshaded white region of the overlaid contour plot 
presented in Fig. 4 represents the domain for such other 
potential solutions. The dots around the response con-
tour lines presented in Fig. 4 provide the direction of 
increase for that response.

Another case of an optimal solution where slightly 
higher power output and efficiency are desired at the 
expense of a reduced reliability is presented in Fig. 5. In 
this case the solution is optimized for a minimum require-
ment of 200 mW and additional constraints specified in 
Eq.  (10). A maximized desirability of 0.748 is achieved 
in this case. The limited other potential solutions (with 
tBar = 0.05 mm) that satisfy the requirements presented 
in Eq. (10) with a D ≤ 0.748 are illustrated by the unshaded 
white region in Fig. 6.

(9)
���� #� ∶ MaximizeD for Pf ≤ 5%, P ≥ 180mWand η ≥ 5%.

(10)
���� #� ∶ MaximizeD for Pf ≤ 10%, P ≥ 200mWand η ≥ 5.1%.

Table 11   Summary of fit, ANOVA and parameter estimates for efficiency

*Beside “Prob>|t|” column values (whenever less than the chosen significance level α = 0.05) indicates that model term is significant. Prob-
abilities less than 0.01% are defaulted to 0.01%

Summary of fit—efficiency

RSquare 0.999984
RSquare Adj 0.999955
Root mean square error 2.542e−5
Mean of response 0.051921
Observations (or sum wgts) 15

Anova

Source DF Sum of squares Mean square F ratio

Model 9 0.00020066 0.000022 34516.53
Error 5 3.22964e−9 6.46e−10 Prob > F
C. Total 14 0.00020066 < .0001*

Parameter estimates

Term Estimate SE t Ratio Prob > |t|

Intercept 0.05327 1.366e−5 3899.6 < .0001*
L 0.0042934 8.037e−6 534.21 < .0001*
Wp − 0.000464 8.037e−6 − 57.72 < .0001*
tBar 0 8.037e−6 0.00 1.0000
L * Wp 0.0004015 8.986e−6 44.68 < .0001*
L * tBar 0 8.986e−6 0.00 1.0000
Wp * tBar 0 8.986e−6 0.00 1.0000
L * L − 0.001923 1.585e−5 − 121.3 < .0001*
Wp * Wp − 0.000105 1.585e−5 − 6.61 0.0012*
tBar * tBar 3.7778e−6 1.585e−5 0.24 0.8211
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4.4 � Validation simulations

Validation case simulations and error analyses are per-
formed to demonstrate the effectiveness of the DOE based 

RSM in predicting the responses apart from optimization. 
Table 13 presents the results from the error analysis. These 
validation runs considered the extreme combinations of 
factor levels to estimate maximum possible error in pre-
dictions. It is interesting to see that the models accurately 

Table 12   Summary of fit, ANOVA and parameter estimates for probability of failure (Pf)

*Beside “Prob>|t|” column values (whenever less than the chosen significance level α = 0.05) indicates that model term is significant. Prob-
abilities less than 0.01% are defaulted to 0.01%

Summary of fit—Pf

RSquare 0.997603
RSquare Adj 0.993288
Root mean square error 0.013807
Mean of response 0.175534
Observations (or sum wgts) 15

Anova

Source DF Sum of squares Mean square F ratio

Model 9 0.39665389 0.044073 231.1893
Error 5 0.00095317 0.000191 Prob > F
C. Total 14 0.39760706 < .0001*

Parameter estimates

Term Estimate SE t Ratio Prob > |t|

Intercept 0.0984793 0.007421 13.27 < .0001*
L − 0.178909 0.004366 − 40.98 < .0001*
Wp 0.0410131 0.004366 9.39 0.0002*
tBar 0.0218394 0.004366 5.00 0.0041*
L * Wp − 0.033913 0.004882 − 6.95 0.0009*
L * tBar − 0.024676 0.004882 − 5.06 0.0039*
Wp * tBar 0.0030755 0.004882 0.63 0.5563
L * L 0.1068837 0.00861 12.41 < .0001*
Wp * Wp 0.0091882 0.00861 1.07 0.3347
tBar * tBar − 0.000489 0.00861 − 0.06 0.9569

Table 13   Error analysis (extreme combinations)

Test factors and levels From FEA RSM prediction Relative error Abs Error

L (mm) Wp (mm) tBar (mm) Power (W) η (%) %Pf Power (W) η (%) %Pf Power [W] (%) η (%) %Pf Pf (%)

3.125 5.3 0.15 0.21492 5.11 15.03 0.21532 5.09 17.15 0 0 14 2
3.125 5.3 0.35 0.21492 5.11 17.24 0.21532 5.09 20.42 0 0 18 3
3.125 5.9 0.15 0.22164 5.04 19.54 0.22188 5.03 22.80 0 0 17 3
3.125 5.9 0.35 0.22164 5.04 22.33 0.22188 5.03 26.37 0 0 18 4
4.375 5.3 0.15 0.17471 5.49 4.53 0.17447 5.50 2.19 0 0 52 2
4.375 5.3 0.35 0.17471 5.49 4.79 0.17447 5.50 2.99 0 0 38 2
4.375 5.9 0.15 0.18164 5.46 6.16 0.18130 5.48 4.44 0 0 28 2
4.375 5.9 0.35 0.18164 5.46 6.47 0.18130 5.48 5.55 0 0 14 1

Max 0 0 52 4
MAE = 2
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(< 1%) predicted the power and efficiency responses. 
Large relative errors are noticed in the Pf estimates < 5%, 
however results indicated that an absolute error and mean 
absolute error are more appropriate for this estimate. Such 
a model evaluation metric is commonly used in regres-
sion analysis [35] and RSM predictions [36] for percentage 
quantities. The maximum absolute error in Pf prediction is 
4% and the MAE is about 2%. These results demonstrate 
the effectiveness of RSM approach for general predictions 
as well as optimization.

5 � Conclusions

Integrated structural and thermoelectric design and 
optimization is a key to the development of structur-
ally reliable and optimally performing TEG systems. 
Such an integrated approach is especially necessary to 
expedite the process of new TE materials development 
for medium to high temperature applications. The geo-
metric parameters of a TEG affect both the performance 

and reliability of TEG. The geometric requirements for 
performance usually contradict the requirements for 
reliability. While relations are established to optimize 
the performance of a TEG based on the material ther-
moelectric properties, no material property based cor-
relations exist to predict the structural integrity of a TEG 
which complicates the integrated design optimization 
process. In this work we implemented the DOE based 
RSM models in conjunction with FEA simulations to dem-
onstrate an integrated optimization from reliability and 
performance perspectives. The parameters that signifi-
cantly contribute to the performance and reliability of a 
TEG were initially determined using 2-level full factorial 
studies which also provided insights on the factor levels 
and domain space for subsequent optimization. The cen-
tral composite design of RSM was used to fit quadratic 
regression models for the power output, efficiency, and 
the probability-of-failure of a TEG. Once the models are 
fit, the simultaneous multiple response optimizations 
were carried out using desirability functions. The follow-
ing conclusion can be made from this study:

Fig. 3   Maximized desirability for Case #1 optimal solution
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Fig. 4   Domain for Case #1 solutions (white area)

Fig. 5   Maximized desirability for Case #2 optimal solution
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•	 The leg length, p- and n-type leg areas significantly 
influence performance whereas the leg-length, 
width, and metallization (interconnect and diffusion 
barrier layer) thicknesses impact the reliability of a 
TEG.

•	 Selection of factor levels is important to the TEG design 
optimization from reliability and performance aspects.

•	 The power of a TEG decreases with length and for typi-
cal application where the external load resistance is 
usually higher than the internal resistance of a TEG the 
efficiency increases to a point then decreases.

•	 The probability of failure of a leg decreases with leg 
length and widths under constant depths.

•	 A barrier layer—interconnect thickness ratio less than 
1.0 is found to be preferable for interface reliability with 
Ni barrier and Cu interconnects.

•	 The influence of barrier layer and interconnect thick-
ness on the failure probability is profound at shorter 
lengths (L/W ≈ 1.0) compared to longer lengths 
(L/W ≈ 2.0).

•	 The DOE based RSM model with desirability functions 
is an appropriate choice for simultaneous multiple 
response optimization and for estimating the trade-
offs between performance and structural reliability 
of a TEG.

•	 The RSM models accurately predicted the power and 
efficiency responses and satisfactorily (difference 
< 5%) predicted the failure probabilities.

•	 The domain for optimal designs from the reliability 
and performance aspects of a TEG could be small and 
depends on the optimization constraints.

The DOE based approach appears to be a robust 
technique that could be integrated into the TE material 
development and device manufacturing processes to 
reduce the lengthy times (currently more than a decade) 
between the material development and device commer-
cialization stages.
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