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Abstract
The soil attributes of spatially structured data were often measured in Central plateau, of Karnataka, but often poorly 
defined spatial variability of soil attributes important for land management under hot semiarid agroecological environ-
ment. The Kaligaudanahalli microwatershed (612 ha) divided into 250 m × 250 m square grids using ArcGIS and collected 
surface soils (0–15 cm) at 89 locations. The results of cluster analysis with average linkage method revealed four soil typol-
ogies viz., slightly alkaline, sandy clay loam texture showing high coefficient of variation for all soil variables in cluster-I, 
but neutral, sandy clay loam with high variability for DTPA-extractable Cu in cluster-II, moderately alkaline sandy clay 
loam to clay texture with high variability for EC, OC, available  K2O, B and Cu for cluster-III and IV. The study concluded that 
the measured soil properties in regular gird sampling at given scale were enough to capture spatial dependence using 
ordinary and cokriging techniques and in deriving thematic maps for efficient soil management strategies at watershed 
level. The results of spatial dependence of each soil property, using ordinary kriging showed that there is strong spatial 
dependence of pH, EC,  K2O, B, Cu, Fe and Mn with nugget-to-sill ratio [(C0/C0 + C)] less than 0.25 showing strong spatial 
distribution where DTPA-extractable Zn had a nugget/sill more than 0.75, displaying a weak spatial autocorrelation. The 
results showed that cokriging is the best fit and strongly correlated with EC,  P2O5,  K2O, Fe and Mn using pH as ancillary 
variable over ordinary kriging to derive thematic maps.
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1 Introduction

The spatial variability of soil properties can be measured 
and quantified at a given scale with regular sampling 
technique for designing sustainable land management 
practices [19, 43]. Most of the studies on spatial variability 
of soil attributes using geospatial techniques have been 
carried out in diverse temperate countries [5, 7, 10, 12, 
15, 47]. In the past three decades, the application of geo-
statistical methods by soil researchers primarily focused 
on predicting spatial variability along a transect [40] or 

at field-scale [8, 43]. Using geostatistics, GIS and remote 
sensing techniques for large area in Australia, McBratney 
et al. [26] provided the comprehensive maps for physical, 
chemical and biological soil properties. In India, majority 
of soil maps were prepared by conventional methods on 
smaller scale. Due to initiation of detailed microwatershed 
surveys in drought prone areas of Karnataka along with 
grid survey, the modern spatial prediction techniques 
were employed in spatial variability of soil properties [25, 
28, 37]. It was reported that soil pH, electrical conductiv-
ity, organic carbon and exchangeable bases have been 
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varied highly in acid soils of India [2], the spatial variability 
of organic carbon, available N, P and K of Karlawad village 
in Dharwad district of Karnataka [30] and in lateritic soils 
of West Bengal [4].

Several workers reported that cokriging employs spatial 
information on the primary variables along with the spatial 
correlation between primary and auxiliary variables [16, 
45, 48, 54]. A recent study [44] made a comparative study 
of interpolation techniques and confirmed that cokriging 
is performed well over ordinary kriging. Considering the 
review of the literature, we hypothesized to answer, what 
statistical tools are useful in explaining the variability of 
soil properties and their use in designing crop specific 
nutrient management plans? The research herein is a part 
of Sujala-III project in semiarid tracts of Karnataka State for 
reducing fertilizer recommendation and enhancing crop 
productivity of small-scale farmers. Hence, the objectives 
of this study were to (i) evaluate the efficacy of grid survey 
method in addressing top soil properties and (ii) analyze 
the variability of physicochemical properties of top soil by 
means of cluster analysis, and their spatial dependence 
by ordinary kriging and cokriging comparison through 
cross-validation.

2  Materials and methods

2.1  Study area

The Kaligaudanahalli microwatershed lies between 
11°41′–11°43′N and 76°37′–76°41′E covering 612 ha. It is 
bounded by Karle, Siddapura, Siddainapura and Maguvi-
nahalli villages in Gundlupet taluk, Chamarajanagar 
district, Karnataka State, India (Fig. 1). The study area is 
a part of hot moist semiarid subregion of Central Karna-
taka Plateau, with medium to deep red loamy soils, low 
AWC (available water holding capacity) and LGP (length 
of growing period) of 120–150 days [46]. The elevation is 
450–900 m above mean sea level with mean annual rain-
fall of 670–890 mm of which about 55–75% is received 
during the south west monsoon. Geological formations in 
the study area show the occurrence of Archean-age gran-
ite gneiss and schistose rocks with quartzite and banded 
iron formations and Dolerite dykes of Proterozoic age with 
variable strike directions and width [3]. It was reported 
that Typic/Lithic Rhodustalfs/Haplustalfs are dominant 
but in association with Typic/Vertic Haplustepts under 
isohyperthermic soil temperature regime and ustic soil 
moisture regime [32].

2.2  Grid soil survey

The grid survey at an interval of by 250 × 250 m was car-
ried out to collect soil samples of plow layer (0–15 cm). 
A total of 89 grid points in Kaligaudanahalli microwater-
shed were taken. At each grid point, 8–10 cores samples 
within 10 m radius were taken and georeferenced using 
GPS system (GARMIN etrex-30x model) (Fig. 2).

2.3  Laboratory methods

The collected surface soil samples were air-dried, 
grinded and passed through 2-mm sieve for fine earth 
fraction and used fine earth fraction (< 2 mm) for labo-
ratory analysis. Soil reaction was determined in 1:2.5 
soil/water suspension using standard pH meter (Hanna 
instrument) and electrical conductivity (EC) using con-
ductivity meter (Toshniwal insts. Mfg. Pvt. Ltd, TC 17). Soil 
organic carbon (OC) was estimated using the wet diges-
tion method as described by Walkley and Black (1934) 
[50] and expressed its value in percentage. The avail-
able potassium  (K+) in 1N ammonium acetate  (NH4OAc) 
at (pH 7.0) was determined by Flame photometer [17]. 
DTPA-extractable micronutrients viz., Fe, Mn, Zn and Cu 
were extracted by 0.005 M DTPA at pH 7.3 according to 
the method of [23], and the concentration of micronu-
trients was estimated using atomic absorption spectro-
photometer (Agilent Technologies, 200 series AA model). 
Available phosphorus was determined by Olsen method 
[27] and available S by  CaCl2 extraction method [53]. The 
available Boron was estimated by azomethine-H method 
by using Lab India (analytical) UV/VIS spectrophotom-
eter [14]. Fertility status of N, P, K and S were categorized 
as low, medium and high and that of DTPA-extractable 
zinc, iron, copper and manganese interpreted as defi-
cient, sufficient and excess as per the criteria of Arora [1].

2.4  Statistical analysis

2.4.1  Hierarchical cluster analysis and descriptive statistics

Hierarchical cluster analysis was used to categorize the 
11 soil properties at 89 locations with similar character-
istics into a group using average. CA was performed to 
identify analogous behavior among the different soil 
properties and also among the samples. It was per-
formed on the normalized data set by means of Ward’s 
method using squared Euclidean distances as a measure 
of similarity (SPSS 15 version). The clusterwise descrip-
tive analysis was made and classified on the basis of 
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coefficient of variation as low: < 15%, moderate: from 
15 to 50% and high as > 50% [51]. Correlations and KS 
test was performed by XLSTAT 20191.1.

2.4.2  Geostatistical analysis

The soil properties were analyzed using geostatistical tool 
and calculated semivariogram [16, 19] for each soil prop-
erty using the equation as given below:

(1)�(h) =
1

2N(h)
+

N(h)
∑

i=i

[

z
(

xi + h
)

− z
(

xi
)]2

,

where γ (h) is the experimental semivariogram value at 
distance interval h; N (h) is the number of sample value 
pairs within the distance interval h; z (xi), z (xi + h) is sample 
values at two points separated by the distance interval h.

Exponential,

The parameters of the model: nugget semivariance, 
range and sill or total semivariance were determined. To 
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Fig. 1  Location map of Kaligaudanahalli microwatershed
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define different classes of spatial dependence for the soil 
variables, the ratio between the nugget and the sill was 
used [8] to classify as: ≤ 25%-strongly spatially depend-
ent, between 26 and 75%-moderately spatially depend-
ent, > 75%-weakly spatially dependent and 100% con-
sidered as non-spatially correlated (pure nugget). We 
employed ordinary [13] and cokriging techniques, and 
used the procedures as given under:

2.4.2.1 Ordinary kriging (OK) Ordinary kriging is an uni-
variate linear regression model which was used to estimate 
variance and confidence interval assuming a normal distri-
bution of errors is the spatial prediction of the unmeasured 
point  s0 is given by predicting the value ẑ(s0), which equals 
the line sum of the known measured values (i.e., observed 
values). The formula was used to workout spatial variability 
as given under:

where ẑ(s0) is the value at location  s0 to be interpolated, 
z
(

si
)

 are the sampled values, and λi, determined by the 
semivariogram modeling and are the weights to be 
assigned to each unsampled location.

2.4.2.2 Cokriging (CoK) Cokriging was worked out based 
on spatial structure of co-variables and their covariance 
(autocorrelation). The cokriging (CoK) estimator ds at the 
unsampled location x0, Zw cross-correlated with the main 
variable Zv, was given as [16]:
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Fig. 2  Map showing grid points in the Kaligaudanahalli microwatershed
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where �i , �j—weights assigned to the known values of the 
primary and secondary variables Zv and Zw, respectively, 
n, m—numbers of primary and secondary observations.

2.4.3  Cross‑validation technique

Cross-validation technique was used to examine the dif-
ference between the known data and the predicted data 
using the mean error [ME, Eq. (5)], the root-mean-squared 
error [RMSE, Eq. (6)], the average kriging standard error 
[AKSE, Eq. (7)], the root-mean-square standardized predic-
tion error [RMSP, Eq. (8)] and the mean standardized pre-
diction error [MSPE, Eq. (9)]. Equations (7) and (9) are only 
applicable to kriging as they require the kriging variance. 
Equations (5) and (6) are applicable to all of the interpola-
tion techniques applied in this research.

where Ẑ(si) is the predicted value, z(si) is the observed 
(known) value, N is the number of values in the dataset, 
and σ2 is the kriging variance for location si [18, 21, 49, 52].

3  Results

3.1  Cluster analysis and sample grouping

The cluster analysis shows that cluster-II (45% of total 
samples) has neutral reaction followed by slightly alkaline 
under cluster-I and III (55.2% of total sample) and mod-
erately alkaline with 9.1% of grids under cluster-IV. The 
mean pH is 7.78 ± 0.61 with CV of 7.81% for cluster-I and 
7.9 ± 0.59 with CV of 7.5% for cluster-III. The cluster-II has 
mean pH of 6.75 ± 0.90 with CV of 13.4% but for cluster-IV 
having mean of 8.21 ± 0.26 with CV of 3.2% (Table 1).
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These soils are nonsaline with electrical conductivity 
less than 0.37 dS  m−1 and high coefficient of variation in 
cluster-I and II (CV > 35%). Considering the trends of soil 
test values [29], these soils have high soil organic carbon 
with mean of 0.81 ± 0.39 for cluster-I, 0.77 ± 0.25 for clus-
ter-II and 0.83 ± 0.51 for cluster-IV, but medium in case of 
cluster-III with mean organic carbon content of 0.63 ± 0.28. 
The high variability of soil organic carbon is recorded in 
cluster-I (CV of 48.4%), cluster-II (CV of 43.99%) and cluster-
IV (CV of 61.15%), but medium in case of cluster-III with CV 
of 32.6%. The available  P2O5 in top soils is categorized as 
high in cluster-IV (mean of 90.23 ± 43.02 kg ha−1), whereas 
medium in cluster-I and III and low in cluster-II (mean of 
14.06 ± 11.72 kg ha−1). Similarly, the status of available 
 K2O is high in all clusters with high variability in cluster-II 
(CV of 35.35%). The sulfur status is medium for cluster-III 
and IV but low in cluster-I and II. The coefficient of varia-
tion is high for all clusters regarding available  P2O5 and S 
status (Table 1). The available boron status is more than 
0.5 mg kg−1 in all clusters with high CV except in cluster-
II where B is medium (0.44 ± 0.3 mg kg−1). Among DTPA-
extractable micronutrients, Cu, Mn and Fe contents shows 
sufficient in all clusters with high coefficient of variation. 
It is interesting to note that DTPA-extractable Zn is below 
critical limit in cluster-II (mean of 0.51 ± 0.37 mg kg−1) and 
cluster-III (0.56 ± 0.28 mg kg−1). These clusters have CV of 
71.86% (cluster-II) and 49.18% (cluster-III).

The Kolmogorov–Smirnov statistic quantifies a distance 
between the empirical distribution function of the sample 
and the cumulative distribution function of the reference 
distribution, or between the empirical distribution func-
tions of two samples and calculates a P value from that and 
the sample sizes. If the P value is small, conclude that the 
two groups were sampled from populations with different 
distributions. The populations may differ in median, vari-
ability or the shape of the distribution.

(KS) normality test indicates that all soil variables are 
very significant (< 0.001) to extremely significant (< 0.0001) 
in all clusters except two variables. As a result of using soft-
ware to test for normality, small p values in the output gen-
erally indicate the data is not from a normal distribution 
[36]. Kolmogorov–Smirnov (KS) normality test indicates 
that  P2O5 is almost normally distributed with a non-sig-
nificant (high) p value of 0.388 in cluster-I, 0.076 in cluster-
III, 0.022 in cluster-IV and Mn with high p value of 0.007 in 
cluster-II and cluster-IV. Except above two variables, all soil 
variables are very significant (< 0.001) to extremely signifi-
cant (< 0.0001) in all clusters (Table 1).

3.2  Correlation matrix

The correlation analysis shows that pH has significant (1% 
level) positive correlation with EC (0.707**),  P2O5 (0.382**), 
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 K2O (0.591**) and negatively correlated with Fe (− 0.744**) 
and Mn (− 0.707**). The results further show that OC has 
a positive correlation of with S, Cu and Fe, respectively 
(Table 2).

3.3  Geostatistical analysis

3.3.1  Ordinary kriging

In ordinary kriging, semivariogram models of exponen-
tial method were used and presented in Table 3. The data 
shows that spatial dependence of soil variable is varied 
from 487.66 m for B to 5198.85 m for available  K2O. In 
agreement with findings of [39], soil OC,  P2O5 and S are 
spatially correlated to distance of 603.06 m, 750.01 m and 

755.70 m; however, it showed a small/zero nugget vari-
ance. It is observed that the nugget semivariance of OC 
and  P2O5 is very small and approached to zero. In the study 
site, relative nugget effect of pH, EC,  K2O, B, Cu, Fe, Zn and 
DTPA-extractable Mn is less than 25% showing a strongly 
spatial dependence. Relative nugget effect for the pH was 
17%, Cu-22%, and Fe-18%, indicating a random structured 
variability and for DTPA-extractable Zn with nugget-to-sill 
ratio of 84%, indicating weakly structured variability.

3.3.2  Cokriging

Soil pH is affected by land use and management, veg-
etation type impacts soil pH, a loss of organic matter 
removal of soil minerals when crops are harvested, 

Table 2  Pearson correlation coefficient matrix of the 11 elements and their physiochemical characteristics measured for the soils

*Significant (p < 0.05)

**Highly significant (p < 0.01)

pH EC OC P2O5 K2O S B Cu Fe Zn Mn

pH 1
EC 0.707 (**) 1
OC 0.016 0.070 1
P2O5 0.382 (**) 0.398 (**) 0.053 1
K2O 0.591 (**) 0.791 (**) 0.178 0.470 (**) 1
S − 0.101 0.000 0.322 (**) 0.092 0.234 (*) 1
B 0.098 − 0.052 0.033 0.136 0.161 0.191 1
Cu − 0.023 − 0.084 0.440 (**) 0.090 0.168 0.268 (*) 0.124 1
Fe − 0.744 (**) − 0.561 (**) 0.267 (*) − 0.202 − 0.360 (**) 0.191 − 0.066 0.419 (**) 1
Zn 0.052 0.069 0.030 0.441 (**) 0.118 0.065 0.045 − 0.076 0.023 1
Mn − 0.707 (**) − 0.568 (**) 0.141 − 0.328 (**) − 0.398 (**) 0.324 (**) 0.021 0.198 0.639 (**) − 0.059 1

Table 3  Semivariogram models (ordinary kriging) of 11 soil properties at Kaligaudanahalli microwatershed

Spatial distribution (S—strong spatial dependence; M—moderate spatial dependence; W—weak spatial dependence; Pure Nugget—no 
spatial correlation), and spatial distribution model. RMSP—root-mean-square standard prediction error

Soil properties Spatial distribution model Neighbors Range (m) Nugget Partial sill Sill Nugget/Sill RMSP

pH Exponential, strong 20 2111.35 0.17 0.79 0.95 0.17 1.0
EC (dS m−1) Exponential, strong 20 5043.93 0.00 0.014 0.02 0.00 1.2
OC (%) Exponential, pure nugget 19 683.06 0.00 683.06 683.06 0.00 1.0
P2O5 (kg ha−1) Exponential, pure nugget 19 750.01 0.00 2763.18 2763.18 0.00 0.9
K2O (kg ha−1) Exponential, strong 20 5198.85 60,120.4 183,666.0 243,786.4 0.25 1.0
S (mg kg−1) Exponential, pure nugget 19 755.70 0.00 88.97 88.97 0.00 0.9
B mg kg−1) Exponential, strong 12 487.66 0.01 0.08 0.10 0.14 1.0
Cu (mg kg−1) Exponential, strong 19 1116.00 0.10 0.36 0.46 0.22 1.0
Fe (mg kg−1) Exponential, strong 20 2616.47 5.61 25.80 31.41 0.18 1.0
Zn (mg kg−1) Exponential, weak 12 503.28 926.78 172.88 1099.66 0.84 0.9
Mn (mg kg−1) Exponential, strong 20 2385.61 14.31 163.37 177.69 0.08 1.1
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erosion of the surface layer, climate, mineral content, 
but soil texture cannot be changed. In cokriging, the 
exponential semivariogram models are worked out 
using pH as ancillary variable and have strong relation 
with EC,  P2O5,  K2O, Fe and Mn. The nugget-to-sill ratio is 
varied from 0.07 for Mn and 0.16 for  P2O5 (Table 4) with 
RMSP of 0.9–1 except for Fe.

3.4  Cross‑validation

3.4.1  Ordinary kriging

The cross-validation of results with the calculation of 
ME, RMSE, AKSE, RMSP, MSPE, R2 and goodness of fit is 
presented in Table 5. The lowest root-mean-square error 
(RMSE) is reported for EC (0.070, 20 neighbors), for B 
(0.289, 12 neighbors) and for organic carbon (0.318, 19 

Table 4  Cross-semivariogram models (cokriging) and parameters for selective soil properties at Kaligaudanahalli microwatershed

Spatial distribution (S—strong spatial dependence; M—moderate spatial dependence; W—weak spatial dependence; Pure Nugget—no 
spatial correlation), and spatial distribution model; RMSP—root-mean-square standard prediction error

Soil properties Spatial distribution model Range (m) Nugget Partial sill Sill Nugget/Sill RMSP

pH versus EC (dS  m−1) Exponential, strong 2167.64 0.15 1.62 1.77 0.09 0.9
pH versus  P2O5 (kg ha−1) Exponential, strong 1087.68 0.24 1.26 1.50 0.16 0.9
pH versus  K2O (kg ha−1) Exponential, strong 1490.61 0.23 1.27 1.50 0.15 1.0
pH versus Fe (mg kg−1) Exponential, strong 2098.45 0.16 1.60 1.76 0.09 1.1
pH versus Mn (mg kg−1) Exponential, strong 1749.57 0.12 1.56 1.67 0.07 0.9

Table 5  Cross-validation (ordinary kriging) RMSE for all soil properties under study in Kaligaudanahalli microwatershed

ME mean error, RMSE root-mean-square error, AKSE average kriging standard error, RMSP root-mean-square standard prediction error, MSPE 
mean standardized prediction error

Soil properties Neighbors ME RMSE AKSE RMSP Regression function MSPE R2 Correlation 
coefficient

pH 20 0.0030 0.6398 0.66161 0.9746 Y = 0.525 * x + 3.567 0.0021 0.482 –
EC (dS  m−1) 20 − 0.0002 0.0708 0.0597 1.1847 Y = 0.511 * x + 0.090 − 0.0076 0.477 0.707**
OC (%) 19 − 0.0001 0.3247 0.3188 1.0196 Y = 0.161 * x + 0.598 7.1452 0.105 –
P2O5 (kg ha−1) 19 − 0.0462 38.854 44.076 0.8910 Y = 0.357 * x + 20.33 − 0.0007 0.293 0.382**
K2O (kg ha−1) 20 − 3.083 318.71 306.14 1.0395 Y = 0.310 * x + 432.9 − 0.0087 0.380 0.591**
S (mg kg−1) 19 − 0.1358 7.3823 7.8863 0.9363 Y = 0.287 * x + 13.101 − 0.0162 0.297 –
B (mg kg−1) 12 − 0.0015 0.2889 0.2994 0.9699 Y = 0.217 * x + 0.385 − 0.0049 0.138 –
Cu (mg kg−1) 19 9.9952 0.5431 0.5557 0.9794 Y = 0.263 * x + 1.273 0.0005 0.238 –
Fe (mg kg−1) 20 − 0.0108 3.5740 3.6237 0.9869 Y = 0.540 * x + 3.468 − 0.0019 0.461 − 0.744**
Zn (mg kg−1) 20 0.1708 31.019 34.476 0.9088 Y = − 0.011 * x + 3.755 0.0046 0.004 –
Mn (mg kg−1) 20 − 0.0689 8.7940 7.8318 1.1240 Y = 0.592 * x + 7.084 − 0.0034 0.406 − 707**

Table 6  Cross-validation (cokriging) RMSE for selective soil properties under study in Kaligaudanahalli microwatershed

ME mean error, RMSE root-mean-square error, AKSE average kriging standard error, RMSP root-mean-square standard prediction error, MSPE 
mean standardized prediction error

Soil properties Neighbors ME RMSE AKSE RMSP Regression function MSPE R2 Good-
ness of 
fit

pH versus EC (dS m−1) 20 − 0.008 0.530 0.568 0.934 Y = 0.664 * x + 2.473 − 0.011 0.65 1
pH versus  P2O5 (kg ha−1) 19 − 0.002 0.599 0.609 0.954 Y = 0.579 * x + 3.115 − 0.010 0.55 1
pH versus  K2O (kg ha−1) 20 − 0.006 0.565 0.552 1.054 Y = 0.658 * x + 2.501 0.023 0.60 1
pH versus Fe 20 − 0.007 0.525 0.563 0.891 Y = 0.621 * x + 2.823 − 0.028 0.66 1
pH versus Mn 20 − 0.010 0.603 0.533 1.155 Y = 0.673 * x + 2.397 0.014 0.55 1



Vol.:(0123456789)

SN Applied Sciences (2019) 1:518 | https://doi.org/10.1007/s42452-019-0486-4 Research Article

neighbors). The root-mean-square standardized predic-
tion error (RMSP) suggests the same since it is less than 
1 for pH and DTPA-extractable Zn except EC and DTPA-
extractable Mn which shows underestimating the vari-
ability predictions. The ME and MSPE are negative for 
EC, OC,  K2O and Mn with AKSE greater than the RMSE, 
indicating larger kriging variance.

3.4.2  Cokriging

The result revealed that the ME and MSPE are negative 
with AKSE greater than the RMSE (Table 6). The R2 value is 
varied from 0.55 for Mn,  P2O5 and 0.65 for EC with good-
ness of fit is 1. Figure 4 shows the scatter plot of estimated 
versus measured of pH versus EC,  P2O5,  K2O and DTPA-
extractable Fe and Mn data using cokriging methods. 
Generally, scatter plot is appropriate for quality assurance 
and accuracy of predictions. It is also useful when there 
are large numbers of sample points and can provide infor-
mation about the strength of a relationship between two 
variables. Based on Fig. 4, all the scatter plots confirm the 
results of RMSE (Table 6).

4  Discussions

The Kaligaudanahalli microwatershed have crest/sum-
mits, back slopes and then foot slopes of granitic terrain 
supporting medium to deep red soils with five surface 
textures such as clay (13.1% of total area), sandy clay 
(23.46%), sandy clay loam (37.54%), sandy loam (13.1%) 
and loamy sand (4.03%) out of total area [34]. The mean 
annual rainfall is 670–890 mm, of which about 55–75% is 
received during kharif season. Descriptive statistical sum-
mary (Table 1) shows that these soils are slightly acid to 
strongly alkaline with low coefficient of variation (< 15%), 
but have high coefficient of variation for electrical conduc-
tivity (> 35%) and for organic carbon, available phospho-
rus and potassium. This observation is in agreement with 
the findings of earlier researchers [6, 9, 11]. Considering 
the critical level of S (10 mg kg−1) and B (0.5 mg kg−1), the 
high variability of S and B is observed. There is a significant 
positive relation of organic carbon with available sulfur 
(mg kg−1) (R2) = 0.142**, significant at 1% level. The avail-
able S is the function of organic carbon as reported by 
Kour and Jalali [20].

It was reported that there is wide spread deficiencies 
of S, B and Zn in drylands of Karnataka [31, 38, 41], but 
the soils in the microwatershed are having medium status 
of S and above critical limit of B status. Similar kinds of 
observations were reported in various parts of Karnataka 
[24, 33, 35, 42]. Among all micronutrients, Zn is deficient 
with high variability. Classical statistics did not show the 

strongly patchy distribution of some soil parameters and 
provided mean values that produced medium and large 
CV for all the soil properties except pH. These findings are 
in agreement with the results of Cambardella and Karlen 
[8] and Geypens et al. (1999) [15].

The cluster analysis was done to find out affinity among 
the 11 soil properties under study and brought out four 
clusters (Fig. 3). The cluster analysis clearly shows dis-
tinct variations in soil properties both within cluster and 
between the clusters. It is pointed here that the neutral 
soils grouped under cluster-II showed high variability of 
organic carbon (CV of 43.99%) with low status of available 
 P2O5, below critical limit of DTPA-extractable Zn and Boron 
(Table 2). It is further observed that soil properties under 
study have high mean ± SD for cluster-IV as compared 
to cluster-II. In case of DTPA-extractable Fe and Mn, the 
trend is opposite to that of cluster-II and IV. Most of the 
grid points in cluster-II are near to the depressional zones 
and subjected to seasonal water stagnation, favoring the 
high concentration of redox sensitive elements such as 
Fe and Mn. The concentration of Fe and Mn in top soils is 
negatively related with pH and expressed its exponential 
relation as: 

Eq 10. DTPA-extractable Iron (mg kg−1) = 8.568  e−0.02x, 
(R2) = 0.5547**
Eq 11. DTPA-extractable Manganese (mg kg−1) = 8.460 
 e−0.008x, (R2) = 0.4999**

This equation is significant at 1% level with coefficient 
of determination (R2) of 0.56** and 0.49** for Mn. The 
performance of semivariogram are depended dividing 
of variogram that computed by the function of the dis-
tance and characterizes the spatial continuity between 
points. Five main factors relate to the quality of the data 
are: distribution, isotropism and anisotropism, variance 
and range, accuracy, spatial correlation and other factors, 
and secondary variables [22]. The changing of variogram 
could be a variable of some parameters such as nugget, 
partial sill or range, and anisotropy of the data that is also 
correlated with the distance of the location and the soil 
properties at a point. In ordinary kriging, exponential sem-
ivariograms shows a range of 487 m for B and 5198 m for 
 K2O (Table 3). Thus, EC and  K2O had a range of more than 
5000 m, indicating that both values influenced by neigh-
boring values of soil over greater distances. The number 
of closest samples chosen varied from 12 for Boron and 
Zn. The cross-validation of results showed that the lowest 
root-mean-square error (RMSE) is reported for EC (0.0708, 
20 neighbors), for B (0.288, 12 neighbors) and for organic 
carbon (0.324, 19 neighbors). The root-mean-square stand-
ardized prediction error (RMSP) suggests the same since 
it is less than 1 for pH and DTPA-extractable Zn, but for 
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Fig. 3  Dendrogram using a hierarchical agglomerative method of complete linkage grouping derived from a Gower’s similarity coefficient
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Fig. 4  Scatter plot of estimated versus measured and normal QQ-plot of standardized estimation errors with cokriging interpolation of pH 
versus EC,  P2O5,  K2O, Fe and Mn
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Fig. 5  Thematic maps on available  P2O5,  K2O, DTPA-extractable Fe and Mn (cokriging)
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underestimating in case of EC and DTPA-extractable Mn 
as RMSP > 1. The predictions are relatively unbiased for pH, 
EC, DTPA-extractable Zn and Mn. Since the average krig-
ing standard error (AKSE greater than the RMSE) indicates 
that the kriging variance is larger than the true estimation 
variance and indicates that the variogram model is over-
estimating the variability of the predictions.

Geostatistical-variogram analysis and spatial interpola-
tion (Ordinary kriging and Co-kriging) methods using the 
threshold limits of each nutrient as per Arora [1] under 
study. RMSE and QQ-plots (Fig. 4) together with the sum 
and average errors were considered to be the best esti-
mation methods (Tables 6). The thematic maps show the 
nutrient zoning of pH versus available phosphorus  (P2O5), 
 K2O, DTPA-extractable Fe and Mn under cokriging as best 
fit model (Fig. 5). The results showed that the area under 
low status of available phosphorus using cokriging is esti-
mated as 434 ha area (70.86%) with moderately acidic (pH 
5.5) to strongly alkaline (pH 9.0) and concentrated in the 
maximum part of the microwatershed, whereas 178 ha 
(29.14%) area covered by medium available  P2O5 with 
neutral (pH 6.5) to strongly alkaline (pH 9.0) in the micro-
watershed. Similar exercise was done for deriving thematic 
maps using cokriging on available  K2O, DTPA-extractable 
Fe and Mn (Fig. 5). The map shows that 6.75% of moder-
ately acid to neutral soils have medium  K2O, whereas the 
remaining 93% of moderately acid to strongly alkaline soils 
have high available  K2O; 26.56% of total area under neutral 
to strongly alkaline conditions are deficient and 73.44% 
are sufficient (pH moderately acid to strongly alkaline) 
in DTPA-extractable Fe. Irrespective of soil pH, the DTPA-
extractable Mn status is sufficient in these soils. The results 
are more encouraging for cokriging over ordinary kriging. 
In practice, identifying the different nutrient zones with 
respect to soil reaction class is useful for effective soil test-
based recommendations and to improve productivity of 
crops grown in the watershed.  

5  Conclusions

The systematic grid survey at 89 locations in Kaligaud-
anahalli microwatershed was carried out with the aim of 
deriving maps and spatial variability of soil nutrients for 
soil-test-based fertilizer recommendations. We employed 
cluster technique and derived four clusters. The normal-
ity test was performed using Kolmogorov–Smirnov test 
and found that available  P2O5 is normally distributed 
with p value of 0.348 and positively correlated with pH 
(r = 0.382**). The ordinary and cokriging techniques used 
to derive thematic maps of available  P2O5,  K2O, DTPA-
extractable Fe and Mn. The results showed that the maps 

derived from cokriging is good for practical recommen-
dations based on soil test values for locally grown crops 
in the microwatershed. The study further stated that the 
applications of cokriging technique for deriving nutrient 
zones are quick and useful for optimizing nutrient plans 
at watershed level.
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