Skip to main content

Advertisement

Log in

Hormone Therapy: Challenges for Treating Hearing Impairments

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

The purpose of this review is to summarize the advances and discoveries in the potential treatment with hormone analogs and some challenges still pending, beyond the classic treatment with corticosteroids. We conduct a review of the functions of hormones on hearing, in human and animal models, the presence of their most relevant receptors, and the desirable and undesirable effects for their therapeutic uses. Different hormones play a regulatory role in the development and maintenance of hearing. Hormone receptors in the ear have been identified over the years, which can be a support to use them as new therapeutic targets Moreover, their mediators, that include cells, neurotrophic factors, or other hormones, could be also useful for treating various hearing impairments The use of synthetic analogs could exert a therapeutic effect on hearing. Hormone therapy, in fact, can contribute positively to the treatment and prevention of various auditory pathologies, through the regeneration or protection. Considering that an optimal result has to be a garantee, it is a must to know their unwanted effects and contraindications. The use of hormones may protect, regenerate, and modulate multiple pathological conditions of the ear, but it would be necessary to standardize drug dosages, find alternative routes, and conduct prospective studies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thomas L, Purvis C, Drew J, Abramovich D, Williams L. Melatonin receptors in human fetal brain: 2-[125I] iodomelatonin binding and MT1 gene expression. J Pineal Res. 2002;33:218–24.

    Article  PubMed  Google Scholar 

  2. Radojevic V, Hanusek C, Setz C, Brand Y, Kapfhammer J, Bodmer D. The somatostatinergic system in the mammalian cochlea. BMC Neurosci. 2011;12:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stenberg A, Wang H, Fish J, Schrott-Fischer A, Sahlin L, Hultcrantz M. Estrogen receptors in the normal adult and developing human inner ear and in Turner’s syndrome. Hear Res. 2001;157:87–92.

    Article  CAS  PubMed  Google Scholar 

  4. Bonnard Å, Sahlin L, Hultcrantz M, Simonoska R. No direct nuclear effect of progesterone in the inner ear: other possible pathways. Acta Otolaryngol. 2013;133:1250–7.

    Article  CAS  PubMed  Google Scholar 

  5. Harvey S, Johnson CD, Sanders EJ. Growth hormone in neural tissues of the chick embryo. J Endocrinol. 2001;169:487–98.

    Article  CAS  PubMed  Google Scholar 

  6. Song L, McGee J, Walsh E. The influence of thyroid hormone deficiency on the development of cochlear nonlinearities. J Assoc Res Otolaryngol. 2008;9:464–76.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Okano T, Kelley M. Expression of insulin-like growth factor binding proteins during mouse cochlear development. Dev Dyn. 2013;242:1210–21.

    Article  CAS  PubMed  Google Scholar 

  8. Xipeng L, Ruiyu L, Meng L, Yanzhuo Z, Kaosan G, Liping W. Effects of diabetes on hearing and cochlear structures. J Otol. 2013;8:82–7.

    Article  Google Scholar 

  9. Fang Q, Longo-Guess C, Gagnon LH, Mortensen AH, Dolan DF, Camper SA, et al. A modifier gene alleviates hypothyroidism-induced hearing impairment in Pou1f1dw dwarf mice. Genetics. 2011;189:665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Basappa J, Graham C, Turcan S, Vetter D. The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic–pituitary–adrenal axis-equivalent signaling system. Hear Res. 2012;288:3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham C, Vetter D. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J Neurosci. 2011;31:1267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trune D, Kempton J. Aldosterone and prednisolone control of cochlear function in MRL/MpJ-Faslpr autoimmune mice. Hear Res. 2001;155:9–20.

    Article  CAS  PubMed  Google Scholar 

  13. Atkinson P, Wise A, Flynn B, Nayagam B, Richardson R. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs. PLoS One. 2014;9:e102077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito J. Regenerative medicine for the inner ear: summary. In: Ito J, editor. Regenerative medicine for the inner ear. Tokyo: Editorial Springer Japan. Minatu-KU; 2014. p. 313–8.

    Google Scholar 

  15. Stenberg A, Wang H, Sahlin L, Hultcrantz M. Mapping of estrogen receptors α and β in the inner ear of mouse and rat. Hear Res. 1999;136:29–34.

    Article  CAS  PubMed  Google Scholar 

  16. Frisina RD. Hormones and hearing: too much or too little of a good thing can be ototoxic. Semin Hear. 2012;33:231–41.

    Article  Google Scholar 

  17. Lee J, Marcus D. Estrogen acutely inhibits ion transport by isolated stria vascularis. Hear Res. 2001;158:123–30.

    Article  CAS  PubMed  Google Scholar 

  18. Laugel GR, Dengerink HA, Wright JW. Ovarian steroid and vasoconstrictor effects on cochlear blood flow. Hear Res. 1987;31:245–51.

    Article  CAS  PubMed  Google Scholar 

  19. Tremere LA, Burrows K, Jeong JK, Pinaud R. Organization of estrogen-associated circuits in the mouse primary auditory cortex. J Exp Neurosci. 2011;5:45–60.

    Google Scholar 

  20. Chen C, Chen C, Yang C, Lin C, Cheng Y. Testosterone modulates preattentive sensory processing and involuntary attention switches to emotional voices. J Neurophysiol. 2015;113:1842–9.

    Article  CAS  PubMed  Google Scholar 

  21. Simonoska R, Stenberg A, Duan M, Yakimchuk K, Fridberger A, Sahlin L, et al. Inner ear pathology and loss of hearing in estrogen receptor-β deficient mice. J Endocrinol. 2009;201:397–406.

    Article  CAS  PubMed  Google Scholar 

  22. McCullar E, Oesterle EC. Cellular targets of estrogen signaling in regeneration of inner ear sensory epithelia. Hear Res. 2009;252:61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Charitidi K, Meltser I, Canlon B. Estradiol treatment and hormonal fluctuations during the estrous cycle modulate the expression of estrogen receptors in the auditory system and the prepulse inhibition of acoustic startle response. Endocrinology. 2012;153:4412–21.

    Article  CAS  PubMed  Google Scholar 

  24. Stenberg A, Simonoska R, Stygar D, Sahlin L, Hultcrantz M. Effect of estrogen and antiestrogens on the estrogen receptor content in the cochlea of ovariectomized rats. Hear Res. 2003;182:19–23.

    Article  CAS  PubMed  Google Scholar 

  25. Price K, Zhu X, Guimaraes P, Vasilyeva O, Frisina R. Hormone replacement therapy diminishes hearing in peri-menopausal mice. Hear Res. 2009;252:29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horner K, Cazals Y, Guieu R, Lenoir M, Sauze N. Experimental estrogen-induced hyperprolactinemia results in bone-related hearing loss in the guinea pig. Am J Physiol Endocrinol Metab. 2007;293:E1224–32.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Mana D, Ceranic B, Djahanbakhch O, Luxon L. Hormones and the auditory system: a review of physiology and pathophysiology. Neuroscience. 2008;153:881–900.

    Article  CAS  PubMed  Google Scholar 

  28. Souza D, Luckwu B, Andrade W, Pessoa L, Nascimento J, Rosa M. Variation in the hearing threshold in women during the menstrual cycle. Int Arch Otorhinolaryngol. 2017;21:323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jönsson R, Rosenhall U, Gause-Nilsson I, Steen B. Auditory function in 70- and 75-year-olds of four age cohorts. Scand Audiol. 1998;27:81–93.

    Article  PubMed  Google Scholar 

  30. McFadden D, Martin G, Stagner B, Maloney M. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared. J Acoust Soc Am. 2009;125:239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Chung C, Chen V, Wang Y, Chien W. Hormone replacement therapy decreases the risk of tinnitus in menopausal women: a nationwide study. Oncotarget. 2018;9:19807–16.

    PubMed  PubMed Central  Google Scholar 

  32. Hedenstierna C, Hultcrantz M, Collins A, Rosenhall U. Hearing in women at menopause. Prevalence of hearing loss, audiometric configuration and relation to hormone replacement therapy. Acta Otolaryngol. 2007;127:149–55.

    Article  Google Scholar 

  33. Curhan S, Eliassen A, Eavey R, Wang M, Lin B, Curhan G. Menopause and postmenopausal hormone therapy and risk of hearing loss. Menopause. 2017;24:1049–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hultcrantz M, Simonoska R, Stenberg AE. Estrogen and hearing: a summary of recent investigations. Acta Otolaryngol. 2016;126:10–4.

    Article  CAS  Google Scholar 

  35. Weiderpass E, Adami HO, Baron JA, Magnusson C, Bergström R, Lindgren A, et al. Risk of endometrial cancer following estrogen replacement with and without progestins. J Natl Cancer Inst. 1999;91:1131–7.

    Article  CAS  PubMed  Google Scholar 

  36. He ZY, Ren DD. Sex hormones and inner ear. In: Drevensek G, editor. Sex hormones in neurodegenerative processes and diseases. London: Editorial Intechopen; 2018. p. 329–46.

    Google Scholar 

  37. Alves C, Oliveira C. Hearing loss among patients with Turner’s syndrome: literature review. Braz J Otorhinolaryngol. 2014;80:257–63.

    Article  PubMed  Google Scholar 

  38. Veldman J. Immune-mediated sensorineural hearing loss. Auris Nasus Larynx. 1998;25:309–17.

    Article  CAS  PubMed  Google Scholar 

  39. Chang K, Park S, Yeo S, Suh B. Effects of testosterone in the treatment of immune-mediated sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2003;260:316–9.

    Article  PubMed  Google Scholar 

  40. Hurtuk A, Dome C, Holloman CH, Wolfe K, Welling DB, Dodson EE, et al. Melatonin: can it stop the ringing? Ann Otol Rhinol Laryngol. 2011;120:433–40.

    Article  PubMed  Google Scholar 

  41. Lopez-Gonzalez M, Santiago A, Esteban-Ortega F. Sulpiride and melatonin decrease tinnitus perception modulating the auditolimbic dopaminergic pathway. J Otolaryngol. 2007;36:213.

    Article  PubMed  Google Scholar 

  42. Neri G, Baffa C, De Stefano A, Poliandri A, Kulamarva G, Di Giovanni P, et al. Management of tinnitus: oral treatment with melatonin and sulodexide. J Biol Regul Homeost Agents. 2009;23:103–10.

    CAS  PubMed  Google Scholar 

  43. Costello RB, Lentino CV, Boyd CC, O’Connell ML, Crawford CC, Sprengel ML, et al. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J. 2014;13:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maldonado M, Murillo-Cabezas F, Terron M, Flores L, Tan D, Manchester L, et al. The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. J Pin Res. 2007;42:1–11.

    Article  CAS  Google Scholar 

  45. Biesalski H, Welker H, Thalmann R, Vollrath L. Melatonin and other serotonin derivatives in the guinea pig membranous cochlea. Neurosci Lett. 1988;91:41–6.

    Article  CAS  PubMed  Google Scholar 

  46. Helliwell R, Williams L. The development of melatonin-binding sites in the ovine fetus. J Endocrinol. 1994;142:475–84.

    Article  CAS  PubMed  Google Scholar 

  47. Lasisi A, Fehintola F. Correlation between plasma levels of radical scavengers and hearing threshold among elderly subjects with age-related hearing loss. Acta Otolaryngol. 2011;131:1160–4.

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Gonzalez M, Guerrero J, Rojas F, Osuna C, Delgado F. Melatonin and other antioxidants prolong the postmortem activity of the outer hair cells of the organ of Corti: its relation to the type of death. J Pin Res. 1999;27:73–7.

    Article  CAS  Google Scholar 

  49. Demir M, Altintoprak N, Aydin S, Kosemihal E, Basak K. Effect of transtympanic injection of melatonin on cisplatin-induced ototoxicity. J Int Adv Otol. 2016;11:202–6.

    Article  Google Scholar 

  50. Lopez-Gonzalez M, Guerrero J, Torronteras R, Osuna C, Delgado F. Ototoxicity caused by aminoglycosides is ameliorated by melatonin without interfering with the antibiotic capacity of the drugs. J Pin Res. 2000;28:26–33.

    Article  CAS  Google Scholar 

  51. Karaer I, Simsek G, Gul M, Bahar L, Gürocak S, Parlakpinar H, et al. Melatonin protects inner ear against radiation damage in rats. Laryngoscope. 2015;25:E345–9.

    Google Scholar 

  52. Chen T, Zhang W, Liang Y, Li Q, Yang C, Yuan YX, et al. Effect of melatonin on expression of prestin protein in the inner ear of mice following radiotherapy. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;53:118–23.

    CAS  PubMed  Google Scholar 

  53. Karlidağ T, Yalçin Ş, Öztürk A, Üstündağ B, Gök Ü, Kaygusuz I, et al. The role of free oxygen radicals in noise induced hearing loss: effects of melatonin and methylprednisolone. Auris Nasus Larynx. 2002;29:147–52.

    Article  PubMed  Google Scholar 

  54. Bas E, Martinez-Soriano F, Láinez J, Marco J. An experimental comparative study of dexamethasone, melatonin and tacrolimus in noise-induced hearing loss. Acta Otolaryngol. 2009;129:385–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kaneko Y, Pappas C, Tajiri N, Borlongan C. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci Rep. 2016;6:35659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bekmez Bilmez Z, Aydin S, Şanli A, Altintoprak N, Demir M, Atalay Erdoğan B, et al. Oxytocin as a protective agent in cisplatin-induced ototoxicity. Cancer Chemother Pharmacol. 2016;77:875–9.

    Article  CAS  PubMed  Google Scholar 

  57. Azevedo A, Figueiredo R, Elgoyhen A, Langguth B, Penido N, Schlee W. Tinnitus treatment with oxytocin: a pilot study. Front Neurol. 2017;8:494.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mutlu A, Ocal F, Erbek S, Ozluoglu L. The protective effect of adrenocorticotropic hormone treatment against noise-induced hearing loss. Auris Nasus Larynx. 2018;45:929–35.

    Article  PubMed  Google Scholar 

  59. Yao X, Rarey KE. Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol. 1996;116:493–6.

    Article  CAS  PubMed  Google Scholar 

  60. Trune D, Canlon B. Corticosteroid therapy for hearing and balance disorders. Anat Rec Oboken. 2012;295:1928–43.

    Article  CAS  Google Scholar 

  61. Halonen J, Hinton A, Frisina R, Ding B, Zhu X, Walton J. Long-term treatment with aldosterone slows the progression of age-related hearing loss. Hear Res. 2016;336:63–71.

    Article  CAS  PubMed  Google Scholar 

  62. Quin L, Zhang B, Wang Q, Li D, Luo X, Zhong S. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig. Acta Otolaryngol. 2017;137:903–9.

    Article  CAS  Google Scholar 

  63. Maateijsen DJ, Kingma CM, De Jong PE, With HP, Albers FW. Aldosterone assessment in patients with Menière’s disease. ORL J Othorhinolaryngol Relat Spec. 2001;63:280–6.

    Article  Google Scholar 

  64. Rüsch A, Ng L, Goodyear R, Oliver D, Lisoukov I, Vennström B, et al. Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J Neurosci. 2001;21:9792–800.

    Article  PubMed  Google Scholar 

  65. Ng L, Cordas E, Wu X, Vella K, Hollenberg A, Forrest D. Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor β1. Endocrinology. 2015;156:3853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharlin D, Ng L, Verrey F, Visser T, Liu Y, Olszewski R, et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep. 2018;8:4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hussein M, Asal S, Salem T, Mohammed A. The effect of L-thyroxine hormone therapy on hearing loss in hypothyroid patients. Egypt J Otolaryngol. 2017;33:637.

    Article  Google Scholar 

  68. Cordas E, Ng L, Hernandez A, Kaneshige M, Cheng S, Forrest D. Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology. 2012;153:1548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Frederiksen BL, Cayé-Thomasen P, Lund SP, Wagner N, Asal K, Olsen NV, et al. Does erythropoietin augment noise induced hearing loss? Hear Res. 2007;223:129–37.

    Article  CAS  PubMed  Google Scholar 

  70. Zhong C, Jiang Z, Guo Q, Zhang X. Protective effect of adenovirus-mediated erythropoietin expression on the spiral ganglion neurons in the rat inner ear. Int J Mol Med. 2018;41:2669–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bächinger D, Horvath L, Eckhard A, Goosmann M, Honegger T, Gassmann M, et al. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice. Toxicol Lett. 2018;291:121–8.

    Article  CAS  PubMed  Google Scholar 

  72. Han F, Yu H, Zheng T, Ma X, Zhao X, Li P, et al. Otoprotective effects of erythropoietin on Cdh23erl/erl mice. Neuroscience. 2013;237:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Monge Naldi A, Belfrage C, Jain N, Wei E, Canto Martorell B, Gassmann M. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis). Neurobiol Aging. 2015;36:3278–87.

    Article  CAS  PubMed  Google Scholar 

  74. Cayé-Thomasen P, Wagner N, Lidegaard Fredriksen B, Asal K, Thomsen J. Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear. Hear Res. 2003;203:21–7.

    Article  CAS  Google Scholar 

  75. Markowski J, Gierek T, Wiecek A, Klimek D, Chudek J. Assessment of hearing organ ability in high- frequency auditory in patients suffering from chronic renal failure treated by haemodialysis and human recombinant erythropoietin (rhPEO). Otolaryngol Pol. 2002;56:589–96.

    PubMed  Google Scholar 

  76. Song J, Sun H, Xu F, Kang W, Gao L, Guo J, et al. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann Neurol. 2016;80:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Natalucci G, Latal B, Koller B, Rüegger C, Sick B, Held L, et al. Effect of early prophylactic high- dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years. JAMA. 2016;315:2079–85.

    Article  CAS  PubMed  Google Scholar 

  78. Smeti I, Assou S, Savary E, Masmoudi S, Zine A. Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia. PLoS One. 2012;7:e42987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marano R, Tickner J, Redmond S. Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss. PLoS One. 2013;8:e63952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gabrielpillai CB, Geissler T, Stock M, Stöver T, Diensthuber M. Growth hormone promotes neurite growth of spiral ganglion neurons. Neuroreport. 2018;29:637–42.

    CAS  PubMed  Google Scholar 

  81. Sun H, Lin C, Smith M. Growth hormone promotes hair cell regeneration in the zebrafish (danio rerio) inner ear following acoustic trauma. PLoS One. 2011;6:e28372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chia DJ. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol Endocrinol. 2014;28:1012–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martinez-Moreno CG, Fleming T, Carranza M, Avila-Mendoza J, Luna M, Harvey S, et al. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp Eye Res. 2018;166:1–12.

    Article  CAS  PubMed  Google Scholar 

  84. Guerra J, Devesa A, Llorente D, Mouro R, Alonso A, García-Cancela J, et al. Early treatment with growth hormone (GH) and rehabilitation recovers hearing in a child with cerebral palsy. Reports. 2019;2:4.

    Article  Google Scholar 

  85. Devesa J, Almengló C, Devesa P. Multiple effects of growth hormone in the body: is it really the hormone for growth? Clin Med Insights Endocrinol Diabetes. 2016;9:47–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, Pichel J, Holley M, Varela-Nieto I. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors. PLoS One. 2010;5:e8699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The role of insulin-like growth factor 1 in the progression of age-related hearing loss. Front Aging Neurosci. 2017;9:411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Varela-Nieto I, Murillo-Cuesta S, Rosa LR, Lassatetta L, Contreras J. IGF-I deficiency and hearing loss: molecular clues and clinical implications. Pediatr Endocrinol Rev. 2013;10:460–72.

    PubMed  Google Scholar 

  89. Attias J, Zarchi O, Nageris BI, Laron Z. Cochlear hearing loss in patients with Laron syndrome. Eur Arch Otorhinolaryngol. 2011;269:461–6.

    Article  PubMed  Google Scholar 

  90. Nakagawa T, Kumakawa K, Usami S, Hato N, Tabuchi K, Takahashi M, et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment. BMC Med. 2014;12:219.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lassale C, Batty G, Steptoe A, Zaninotto P. Insulin-like growth factor 1 in relation to future hearing impairment: findings from the English longitudinal study of ageing. Sci Rep. 2017;7:4212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Caelers A, Monge A, Brand Y, Bodmer D. Somatostatin and gentamicin-induced auditory hair cell loss. Laryngoscope. 2009;119:933–7.

    Article  CAS  PubMed  Google Scholar 

  93. Brand Y, Radojevic V, Sung M, Wei E, Setz C, Glutz A, et al. Role of somatostatin receptor-2 in gentamicin-induced auditory hair cell loss in the mammalian inner ear. PLoS One. 2014;9:e108146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kenkre J, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55:308–27.

    Article  CAS  PubMed  Google Scholar 

  95. Quigley CA, Crowe BJ, Anglin DG, Chipman JJ. Growth hormone and low dose estrogen in turner syndrome: results of a United States multi-center trial to near-final height. J Clin Endocrinol Metab. 2002;87:2033–41.

    Article  CAS  PubMed  Google Scholar 

  96. Davenport M, Roush J, Liu C, Zagar A, Eugster E, Travers S, et al. Growth hormone treatment does not affect incidences of middle ear disease or hearing loss in infants and toddlers with Turner syndrome. Horm Res Paediatr. 2010;74:23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lando M, Hoover L, Finerman G. Stabilization of hearing loss in Paget’s disease with calcitonin and etidronate. Arch Otolaryngol Head Neck Surg. 1988;114:891–4.

    Article  CAS  PubMed  Google Scholar 

  98. Aoki M, Tanahashi S, Mizuta K, Kato H. Treatment for progressive hearing loss due to Paget’s disease of bone – a case report and literature review. J Int Adv Otol. 2016;11:267–70.

    Article  Google Scholar 

  99. Lacosta Nicolás A, Sánchez del Hoyo J, García Cano J. Posible beneficio de la calcitonina en el tratamiento de la otosclerosis. Acta Otorrinolaringol Esp. 2003;54:169–72.

    Article  PubMed  Google Scholar 

  100. Kitahara T, Doi K, Maekawa C, Kizawa K, Horii A, Kubo T, et al. Meniere’s attacks occur in the inner ear with excessive vasopressin type-2 receptors. J Neuroendocrinol. 2008;20:1295–300.

    Article  CAS  PubMed  Google Scholar 

  101. Aoki M, Asai M, Nishihori T, Mizuta K, Ito Y, Ando K. The relevance of an elevation in the plasma vasopressin levels to the pathogenesis of Meniere’s attack. J Neuroendocrinol. 2007;19:901–6.

    Article  CAS  PubMed  Google Scholar 

  102. Hornibrook J, George P, Gourley J. Vasopressin in definite Meniere’s disease with positive electrocochleographic findings. Acta Otolaryngol. 2011;131:613–7.

    Article  CAS  PubMed  Google Scholar 

  103. Wu J, Zhou J, Dong L, Fan W, Zhang J, Wu C. A mysterious role of arginine vasopressin levels in Ménièreʼs disease—meta-analysis of clinical studies. Otol Neurotol. 2017;38:161–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Foundation Foltra (Teo, Spain) for the support given at the time of writing this review.

Contributors

JG and JD participated equally in the conception and writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Guerra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, J., Devesa, J. Hormone Therapy: Challenges for Treating Hearing Impairments. SN Compr. Clin. Med. 1, 603–615 (2019). https://doi.org/10.1007/s42399-019-00089-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00089-y

Keywords

Navigation