Skip to main content

Advertisement

Log in

Diabetes and Sperm DNA Damage: Efficacy of Antioxidants

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) represents one of the major threats to human health all over the world, affecting almost every system of the body. Its prevalence is escalating globally and is associated with reproductive impairment in both males and females. Reports on male infertility due to DM is lacking since most affected individuals are unaware of their infertility condition due to the late onset of DM. Glucose metabolism is an imperative occasion in spermatogenesis, causing adverse effects on male fertility, principally on sperm DNA quality, motility, and ingredients of seminal plasma. DM is coupled with an increased oxidative stress (OS), causing sperm nuclear and mitochondrial DNA damage. Reactive oxygen species (ROS) hassles the fluidity of sperm plasma membrane, decreases sperm motility and ability to fuse with oocyte as well as altering the sperm DNA integrity. Lamentably, spermatozoa cannot repair the damage initiated by excessive ROS as they do not have the cytoplasmic enzymes required to achieve the repair. Diabetes may impact the epigenetic change during spermatogenesis which may be inherited through male gamete to more than one generation increasing the risk of diabetes in offspring. Administration of antioxidants in male infertility has started to pull in significant intrigue. Many studies have shown that antioxidants amazingly reduce the oxidative stress markers and boost the antioxidant enzymes. Currently treatment strategies are aimed at lowering ROS levels to maintain normal cell function. This review highlights the potential impact of DM on sperm DNA integrity, epigenetic dysregulation and efficacy of antioxidant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alberti KGMM, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    CAS  PubMed  Google Scholar 

  2. Cavallini G. Male idiopathic oligoasthenoteratozoospermia. Asian J Androl. 2006;8:143–57.

    CAS  PubMed  Google Scholar 

  3. Agbaje I, Rogers D, McVicar C, McClure N, Atkinson A, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1871–7.

    CAS  PubMed  Google Scholar 

  4. Kilarkaje N, Al-Hussaini H, Al-Bader MM. Diabetes-induced DNA damage and apoptosis are associated with poly (ADP ribose) polymerase 1 inhibition in the rat testis. Eur J Pharmacol. 2014;737:29–40.

    CAS  PubMed  Google Scholar 

  5. Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2012;227:421–30.

    CAS  PubMed  Google Scholar 

  6. de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm arcosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl. 1998;19:585–94.

    PubMed  Google Scholar 

  7. Aitken RJ, Ryan AL, Baker MA, McLaughlin EA. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med. 2004;36:994–1010.

    CAS  PubMed  Google Scholar 

  8. Allamaneni SS, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82:1684–6.

    PubMed  Google Scholar 

  9. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Guerin JF. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    CAS  PubMed  Google Scholar 

  10. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    PubMed  Google Scholar 

  11. Donnelly ET, McClure N, Lewis SE. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril. 1999;72:484–95.

    CAS  PubMed  Google Scholar 

  12. Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas AJ Jr, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78:1215–24.

    PubMed  Google Scholar 

  13. Agarwal A, Hamamah S, Shekarriz M. Reactive oxygen species and fertilizing capacity of spermatozoa. Contracept Fertil Sex. 1994;22:327–30.

    Google Scholar 

  14. Kobayashi H, Gil-Guzman E, Mahran AM, Sharma RK, Nelson DR, Agarwal A. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001;22:568–74.

    CAS  PubMed  Google Scholar 

  15. Zalata AA, Ahmed AH, Allamaneni S, Comhaire FH, Agarwal A. Relationship between acrosin activity of human spermatozoa and oxidative stress. Asian J Androl. 2004;6:313–8.

    CAS  PubMed  Google Scholar 

  16. Hud NV, Downing KH, Balhorn R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci. 1995;92:3581–5.

    CAS  PubMed  Google Scholar 

  17. Adenot PG, Mercier Y, Renard J-P, Thompson EM. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development. 1997;124:4615–25.

    CAS  PubMed  Google Scholar 

  18. Pittoggi C, Renzi L, Zaccagnini G, Cimini D, Degrassi F, Giordano R, et al. A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci. 1999;112:3537–48.

    CAS  PubMed  Google Scholar 

  19. Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO. Human sperm telomere–binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol. 2000;151:1591–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Bradbury EM, et al. Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics. 2004;84:745–56.

    CAS  PubMed  Google Scholar 

  21. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nadel B, de Lara J, Finkernagel SW, Steven Ward W. Cell-specific organization of the 5S ribosomal RNA gene cluster DNA loop domains in spermatozoa and somatic cells. Biol Reprod. 1995;53:1222–8.

    CAS  PubMed  Google Scholar 

  23. Martins RP, Ostermeier GC, Krawetz SA. Nuclear matrix interactions at the human protamine domain a working model of potentiation. J Biol Chem. 2004;279:51862–8.

    CAS  PubMed  Google Scholar 

  24. Bench G, Friz A, Corzett M, Morse D, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry. 1996;23:263–71.

    CAS  PubMed  Google Scholar 

  25. Steger K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol. 1999;199:471–87.

    CAS  PubMed  Google Scholar 

  26. Perreault SD, Zirkin BR. Sperm nuclear decondensation in mammals: role of sperm-associated proteinase in vivo. J Exp Zool. 1982;224:253–7.

    CAS  PubMed  Google Scholar 

  27. Ohsumi K, Katagiri C, Yanagimachi R. Human sperm nuclei can transform into condensed chromosomes in Xenopus egg extracts. Gamete Res. 1988;20:1–9.

    CAS  PubMed  Google Scholar 

  28. Balhorn R, Corzett M, Mazrimas J, Watkins B. Identification of bull protamine disulfides. Biochemistry. 1991;30:175–81.

    CAS  PubMed  Google Scholar 

  29. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13:313–27.

    CAS  PubMed  Google Scholar 

  30. Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci. 2007;120:1689–700.

    CAS  PubMed  Google Scholar 

  31. Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55:789–95.

    CAS  PubMed  Google Scholar 

  32. Sexton WJ, Jarow JP. Effect of diabetes mellitus upon male reproductive function. Urology. 1997;49:508–13.

    CAS  PubMed  Google Scholar 

  33. Delfino M, Imbrogno N, Elia J, Capogreco F, Mazzilli F. Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urologica e Nefrologica= The Italian Journal of Urology and Nephrology. 2007;59:131–5.

    CAS  PubMed  Google Scholar 

  34. Kangralkar V, Patil SD, Bandivadekar R. Oxidative stress and diabetes: a review. Int J Pharm Appl. 2010;1:38–45.

    CAS  Google Scholar 

  35. Wautier J-L, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circ Res. 2004;95:233–8.

    CAS  PubMed  Google Scholar 

  36. Mallidis C, Agbaje I, Rogers D, Glenn J, McCullough S, Atkinson AB, et al. Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus. Hum Reprod. 2007;22:2169–77.

    CAS  PubMed  Google Scholar 

  37. Mallidis C, Agbaje I, Rogers D, Glenn J, Pringle R, Atkinson A, et al. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl. 2009;32:295–305.

    CAS  PubMed  Google Scholar 

  38. Laleethambika N, Dharwadkar MN, Santhy K, Sangeetha M, Silambuchelvi D, Balachandar V. Evaluation of M2/ANXA5 haplotype and P53 codon 72 polymorphism in a patient with recurrent pregnancy loss, ectopic pregnancy and recurrent implantation failure. Int J Hum Genet. 2016;16:166–71.

    Google Scholar 

  39. Tavares RS, Mansell S, Barratt CL, Wilson SM, Publicover SJ, Ramalho-Santos J. p, p′-DDE activates CatSper and compromises human sperm function at environmentally relevant concentrations. Hum Reprod. 2013;28:3167–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tavares RS, Amaral S, Paiva C, Baptista M, Ramalho-Santos J. In vitro exposure to the organochlorine p, p′-DDE affects functional human sperm parameters. Chemosphere. 2015;120:443–6.

    CAS  PubMed  Google Scholar 

  41. Sousa MI, Amaral S, Tavares RS, Paiva C, Ramalho-Santos J. Concentration-dependent Sildenafil citrate (Viagra) effects on ROS production, energy status, and human sperm function. Syst Biol Reprod Med. 2014;60:72–9.

    CAS  PubMed  Google Scholar 

  42. Scheepers A, Joost H-G, Schurmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr. 2004;28:364–71.

    CAS  Google Scholar 

  43. Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C. GLUTs and mammalian sperm metabolism. J Androl. 2011;32:348–55.

    CAS  PubMed  Google Scholar 

  44. Joost H-G, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18:247–56.

    CAS  PubMed  Google Scholar 

  45. Yang J, Cummings EA, O’connell C, Jangaard K. Fetal and neonatal outcomes of diabetic pregnancies. Obstet Gynecol. 2006;108:644–50.

    PubMed  Google Scholar 

  46. Purcell SH, Moley KH. Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol Metab. 2009;20:483–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dias TR, Alves MG, Silva BM, Oliveira PF. Sperm glucose transport and metabolism in diabetic individuals. Mol Cell Endocrinol. 2014;396:37–45.

    CAS  PubMed  Google Scholar 

  48. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol: WJG. 2009;15:4137–42.

    CAS  PubMed  Google Scholar 

  49. Ayepola OR, Brooks NL, Oguntibeju OO. Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. Antioxidant-antidiabetic agents and human health. InTech; 2014.

  50. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17:276–87.

    CAS  PubMed  Google Scholar 

  51. Alves M, Martins A, Rato L, Moreira P, Socorro S, Oliveira P. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2013;1832:626–35.

    CAS  Google Scholar 

  52. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21:109.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang C, Liu J, Pan H, Yang X, Bian K. Mitochondrial dysfunction induced by excessive ROS/RNS-metabolic cardiovascular disease and traditional Chinese medicines intervention. Zhongguo Zhong Yao za Zhi= Zhongguo Zhongyao zazhi= China Journal of Chinese Materia Medica. 2011;36:2423–8.

    PubMed  Google Scholar 

  54. Jutte NH, Grootegoed J, Rommerts F, Van der Molen H. Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. J Reprod Fertil. 1981;62:399–405.

    CAS  PubMed  Google Scholar 

  55. Alves MG, Martins AD, Moreira PI, Carvalho RA, Sousa M, Barros A, et al. Metabolic fingerprints in testicular biopsies from type 1 diabetic patients. Cell Tissue Res. 2015;362:431–40.

    CAS  PubMed  Google Scholar 

  56. Rato L, Alves M, Dias T, Cavaco J, Oliveira PF. Testicular metabolic reprogramming in neonatal streptozotocin-induced type 2 diabetic rats impairs glycolytic flux and promotes glycogen synthesis. J Diabetes Res. 2015;2015:1–13.

    Google Scholar 

  57. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complicat. 2001;15:203–10.

    CAS  PubMed  Google Scholar 

  59. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003;26:1589–96.

    CAS  PubMed  Google Scholar 

  60. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Moussa S. Oxidative stress in diabetes mellitus. Romanian J Biophys. 2008;18:225–36.

    CAS  Google Scholar 

  62. SIKKA SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16:464–8.

    CAS  PubMed  Google Scholar 

  63. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    CAS  PubMed  Google Scholar 

  64. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.

    PubMed  Google Scholar 

  65. Bansal AK, Bilaspuri G. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2011;2011:1–7.

    Google Scholar 

  66. Saalu L. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13:413–22.

    CAS  PubMed  Google Scholar 

  67. Hampl R, Drábková P, Kanďár R, Stěpán J. Impact of oxidative stress on male infertility. Ceska Gynekologie. 2012;77:241–5.

    CAS  PubMed  Google Scholar 

  68. Ďuračková Z. Free radicals and antioxidants for non-experts. Systems biology of free radicals and antioxidants. Berlin: Springer; 2014. p. 3–38.

    Google Scholar 

  69. Wallach EE, Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63:1143–57.

    Google Scholar 

  70. Whittington K. Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int J Androl. 1999;22:229–35.

    CAS  PubMed  Google Scholar 

  71. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.

    CAS  PubMed  Google Scholar 

  72. Potts J, Pasqualotto F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia. 2003;35:304–8.

    CAS  PubMed  Google Scholar 

  73. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45.

    PubMed  PubMed Central  Google Scholar 

  74. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    CAS  PubMed  Google Scholar 

  75. John Aitken R, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41:183–97.

    Google Scholar 

  76. Hipler U, Görnig M, Hipler B, Römer W, Schreiber G. Stimulation and scavestrogen-induced inhibition of reactive oxygen species generated by rat sertoli cells. Arch Androl. 2000;44:147–54.

    CAS  PubMed  Google Scholar 

  77. Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19:538–50.

    CAS  PubMed  Google Scholar 

  78. Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102:1518–27.

    CAS  PubMed  Google Scholar 

  79. Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34:298–307.

    CAS  PubMed  Google Scholar 

  80. Manda K, Ueno M, Moritake T, Anzai K. α-Lipoic acid attenuates x-irradiation-induced oxidative stress in mice. Cell Biol Toxicol. 2007;23:129–37.

    CAS  PubMed  Google Scholar 

  81. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89:124–8.

    PubMed  Google Scholar 

  82. Lao XQ, Zhang Z, Lau AK, Chan T-C, Chuang YC, Chan J, et al. Exposure to ambient fine particulate matter and semen quality in Taiwan. Occup Environ Med. 2018;75:148–54.

    PubMed  Google Scholar 

  83. Younglai EV, Holloway AC, Foster WG. Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update. 2005;11:43–57.

    PubMed  Google Scholar 

  84. Balachandar V, Kumar R, Prakash V, Devi SM, Kumar BL, Manikantan P, et al. Evaluation of genetic alterations in inhabitants of a naturally high level background radiation and Kudankulam nuclear power project site in India. Asian Pac J Cancer Prev. 2011;12:35–41.

    PubMed  Google Scholar 

  85. Vellingiri B, Shanmugam S, Subramaniam MD, Balasubramanian B, Meyyazhagan A, Alagamuthu K, et al. Cytogenetic endpoints and xenobiotic gene polymorphism in lymphocytes of hospital workers chronically exposed to ionizing radiation in cardiology, radiology and orthopedic laboratories. Ecotoxicol Environ Saf. 2014;100:266–74.

    CAS  PubMed  Google Scholar 

  86. Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology. 2001;58:258–61.

    CAS  PubMed  Google Scholar 

  87. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.

    CAS  PubMed  Google Scholar 

  88. Lopes S, Sun J-G, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection 1. Fertil Steril. 1998;69:528–32.

    CAS  PubMed  Google Scholar 

  89. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.

    CAS  PubMed  Google Scholar 

  90. Muratori M, Piomboni P, Baldi E, Filimberti E, Pecchioli P, Moretti E, et al. Functional and ultrastructural features of DNA-fragmented human sperm. J Androl. 2000;21:903–12.

    CAS  PubMed  Google Scholar 

  91. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75:674–7.

    CAS  PubMed  Google Scholar 

  92. De Lamirande E. The dark and bright sides of reactive oxygen species on sperm function. The male gamete: from basic science to clinical application. 1999;455–67.

  93. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.

    PubMed  Google Scholar 

  94. McPherson S, Longo F. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. 1993.

  95. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70:910–8.

    CAS  PubMed  Google Scholar 

  96. Laberge R-M, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73:289–96.

    CAS  PubMed  Google Scholar 

  97. Muratori M, Marchiani S, Maggi M, Forti G, Baldi E. Origin and biological significance of DNA fragmentation in human spermatozoa. Front Biosci. 2006;11:1491–9.

    CAS  PubMed  Google Scholar 

  98. Twigg J, Irvine DS, Houston P, Fulton N, Michael L, Aitken RJ. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod. 1998;4:439–45.

    CAS  PubMed  Google Scholar 

  99. Chen S, Allam J-P, Duan Y, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288:191–9.

    CAS  PubMed  Google Scholar 

  100. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    PubMed  Google Scholar 

  101. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.

    CAS  PubMed  Google Scholar 

  102. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40.

    PubMed  Google Scholar 

  103. Lewis SE, Simon L. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13:201–7.

    Google Scholar 

  104. Zini A, San Gabriel M, Libman J. Lycopene supplementation in vitro can protect human sperm deoxyribonucleic acid from oxidative damage. Fertil Steril. 2010;94:1033–6.

    CAS  PubMed  Google Scholar 

  105. Hikim AS, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4:38–47.

    CAS  Google Scholar 

  106. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16:2262–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Comar VA, Petersen CG, Mauri AL, Mattila M, Vagnini LD, Renzi A, et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist Reprod. 2017;21:306.

    PubMed  PubMed Central  Google Scholar 

  108. Long L, Qiu H, Cai B, Chen N, Lu X, Zheng S, et al. Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway. Oncotarget. 2018;9:5321.

    PubMed  PubMed Central  Google Scholar 

  109. DeVries A, Vercelli D. Epigenetic mechanisms in asthma. Ann Am Thorac Soc. 2016;13:S48–50.

    PubMed  PubMed Central  Google Scholar 

  110. Griseri P, Garrone O, Sardo AL, Monteverde M, Rusmini M, Tonissi F, et al. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget. 2016;7:26465.

    PubMed  PubMed Central  Google Scholar 

  111. Kim SY, Morales C, Gillette TG, Hill JA. Epigenetic regulation in heart failure. Curr Opin Cardiol. 2016;31:255–65.

    PubMed  PubMed Central  Google Scholar 

  112. Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev. 2014;26:79–88.

    CAS  PubMed  Google Scholar 

  113. Komiya A, Kawauchi Y, Kato T, Watanabe A, Tanii I, Fuse H. Sperm nuclear vacuoles in relation to acrosome reactions and sperm motility. Sci World J. 2014;2014:1–8.

    Google Scholar 

  114. Oldereid NB, Hanevik HI, Bakkevig I, Romundstad LB, Magnus Ø, Hazekamp J, et al. Pregnancy outcome according to male diagnosis after ICSI with non-ejaculated sperm compared with ejaculated sperm controls. Reprod BioMed Online. 2014;29:417–23.

    PubMed  Google Scholar 

  115. Wosnitzer M, Goldstein M, Hardy MP. Review of azoospermia. Spermatogenesis. 2014;4:e28218.

    PubMed  PubMed Central  Google Scholar 

  116. Xu A-M, Liu B-J, Wang Z-J. DAZL and male infertility: an update. Zhonghua nan ke xue= National Journal of Andrology. 2014;20:647–50.

    CAS  PubMed  Google Scholar 

  117. Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 2010;94:585–94.

    CAS  PubMed  Google Scholar 

  118. Paoloni-Giacobino A. Epigenetics in reproductive medicine. Pediatr Res. 2007;61:51R–7R.

    CAS  PubMed  Google Scholar 

  119. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22:908–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, et al. DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol. 2007;127:175–81.

    CAS  PubMed  Google Scholar 

  121. De Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3:175–94.

    PubMed  Google Scholar 

  122. Marques CJ, João Pinho M, Carvalho F, Bièche I, Barros A, Sousa M. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics. 2011;6:1354–61.

    CAS  PubMed  Google Scholar 

  123. Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. J Assist Reprod Genet. 2012;29:213–23.

    PubMed  PubMed Central  Google Scholar 

  124. Bhattacharyya T, Gregorova S, Mihola O, Anger M, Sebestova J, Denny P, et al. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc Natl Acad Sci. 2013;110:E468–77.

    CAS  PubMed  Google Scholar 

  125. Gabory A, Attig L, Junien C. Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes. 2011;2:164–75.

    PubMed  PubMed Central  Google Scholar 

  126. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Hum Genet. 2012;131:1565–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Berthaut I, Montjean D, Dessolle L, Morcel K, Deluen F, Poirot C, et al. Effect of temozolomide on male gametes: an epigenetic risk to the offspring? J Assist Reprod Genet. 2013;30:827–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays. 2014;36:359–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Feuer S, Camarano L, Rinaudo P. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod. 2012;19:189–204.

    PubMed  PubMed Central  Google Scholar 

  130. Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J, et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci. 2005;102:4068–73.

    CAS  PubMed  Google Scholar 

  131. Jelodar G, Khaksar Z, Pourahmadi M. Endocrine profile and testicular histomorphometry in adult rat offspring of diabetic mothers. J Physiol Sci. 2009;59:377–82.

    CAS  PubMed  Google Scholar 

  132. Hata K, Kusumi M, Yokomine T, Li E, Sasaki H. Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev. 2006;73:116–22.

    CAS  PubMed  Google Scholar 

  133. Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 2007;16:2272–80.

    CAS  PubMed  Google Scholar 

  134. Tsounapi P, Honda M, Dimitriadis F, Kawamoto B, Hikita K, Muraoka K, et al. Impact of antioxidants on seminal vesicles function and fertilizing potential in diabetic rats. Asian J Androl. 2017;19:639.

    CAS  PubMed  Google Scholar 

  135. Wroblewski N, Schill W-B, Henkel R. Metal chelators change the human sperm motility pattern. Fertil Steril. 2003;79:1584–9.

    PubMed  Google Scholar 

  136. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod BioMed Online. 2004;8:616–27.

    CAS  PubMed  Google Scholar 

  137. Lenzi A, Sgro P, Salacone P, Paoli D, Gilio B, Lombardo F, et al. A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril. 2004;81:1578–84.

    CAS  PubMed  Google Scholar 

  138. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci. 2014;111:1873–8.

    CAS  PubMed  Google Scholar 

  139. Biemond P, Van Eijk H, Swaak A, Koster JF. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J Clin Invest. 1984;73:1576–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5:399–420.

    CAS  PubMed  Google Scholar 

  141. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26:349–53.

    CAS  PubMed  Google Scholar 

  142. Bahmanzadeh M, Vahidinia A, Mehdinejadiani S, Shokri S, Alizadeh Z. Dietary supplementation with astaxanthin may ameliorate sperm parameters and DNA integrity in streptozotocin-induced diabetic rats. Clin Exp Reprod Med. 2016;43:90–6.

    PubMed  PubMed Central  Google Scholar 

  143. Fontoura P, Mello MD, Gallo-Sá P, Erthal-Martins MC, Cardoso MCA, Ramos C. Leptin improves sperm cryopreservation via antioxidant defense. J Reprod Infertil. 2017;18:172.

    PubMed  PubMed Central  Google Scholar 

  144. Dawson EB, Harris WA, Rankin WE, Charpentier LA, McGANITY WJ. Effect of ascorbic acid on male fertility. Ann N Y Acad Sci. 1987;498:312–23.

    CAS  PubMed  Google Scholar 

  145. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014.

  146. Ding S-S, Sun P, Zhang Z, Liu X, Tian H, Huo Y-W, et al. Moderate dose of Trolox preventing the deleterious effects of Wi-fi radiation on spermatozoa in vitro through reduction of oxidative stress damage. Chin Med J. 2018;131:402.

    PubMed  PubMed Central  Google Scholar 

  147. Zhu Z, Ren Z, Fan X, Pan Y, Lv S, Pan C, et al. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS One. 2017;12:e0181110.

    PubMed  PubMed Central  Google Scholar 

  148. Hisatomi A, Sakuma S, Fujiwara M, Seki J. Effect of tacrolimus on the cauda epididymis in rats: analysis of epididymal biochemical markers or antioxidant defense enzymes. Toxicology. 2008;243:23–30.

    CAS  PubMed  Google Scholar 

  149. Cesar Mora-Esteves, David Shin, Nutrient Supplementation: Improving Male Fertility Fourfold. Seminars in Reproductive Medicine 2013;31(04):293–300

  150. Baker HW, Brindle J, Irvine DS, Aitken RJ. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes. Fertil Steril. 1996;65(2):411–9.

  151. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.

  152. Fanuel Lampiao, Free radicals generation in an fertilization setting and how to minimize them. World Journal of Obstetrics and Gynecology 2012;1(3):29.

  153. Rakesh K. Sharma, Ashok Agarwal, Role of reactive oxygen species in male infertility. Urology 1996;48(6):835–850.

  154. Helmut SIES, Strategies of antioxidant defense. European Journal of Biochemistry 1993;215(2):213–219.

  155. Amrit Kaur Bansal, G. S. Bilaspuri, Impacts of Oxidative Stress and Antioxidants on Semen Functions. Veterinary Medicine International 2011:1–7.

Download references

Acknowledgments

The authors would like to thank all the research scholars in our lab for providing support to complete this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandran Manojkumar or Vellingiri Balachandar.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laleethambika, N., Anila, V., Manojkumar, C. et al. Diabetes and Sperm DNA Damage: Efficacy of Antioxidants. SN Compr. Clin. Med. 1, 49–59 (2019). https://doi.org/10.1007/s42399-018-0012-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-018-0012-9

Keywords

Navigation