Skip to main content
Log in

Uddanam Kidney Nephropathy Under the Light of Metagenomics Perspective

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

In this work, we proposed a research hypothesis which mainly focuses on the role of gut microbiota, in relation with chronic kidney disease, existing in the village of Uddanam belonging to the State of Andhra Pradesh, India. Earlier studies conducted on various physical and chemical parameters, such as food, water, soil and pesticides, could not find the exact cause of the aetiology of the disease. As there were no physical and chemical causative factors identified, this disease was hence named as mysterious Uddanam kidney nephropathy of unknown origins. There are few scientific pieces of evidence available in the literature, which suggests the role of gut microbiome dysbiosis and its impact on kidney disease. Such kinds of scientific studies which deal with the analysis of microbial communities of the gut region and identification of dysbiosis were not performed in the case of Uddanam kidney nephropathy. Thus, through this paper, we propose a hypothesis to analyse and establish the relationship between the gut dysbiosis and renal failure by performing the metagenomics study between the patients and the normal individuals. To the best of our knowledge, there are no reports available to date on the dysbiosis of the gut microbiome and its impact on Uddanam nephropathy and hence this research hypothesis is thus proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abraham G, Varughese S, Thandavan T, Iyengar A, Fernando E, Naqvi S, et al. Chronic kidney disease hotspots in developing countries in South Asia. Clin Kidney J. 2016;9(1):135–41.

    Article  Google Scholar 

  2. Ganguli A. Uddanam nephropathy/regional nephropathy in India: preliminary findings and a plea for further research. Am J Kidney Dis. 2016;68(3):344–8.

    Article  Google Scholar 

  3. Reddy D, Gunasekar A. Chronic kidney disease in two coastal districts of Andhra Pradesh, India: role of drinking water. Environ Geochem Health. 2013;35(4):439–54.

    Article  CAS  Google Scholar 

  4. Satyanarayana G, Ramadasu P, Devi PP, Prasad N, Rao GN. Ground water quality assessment in Uddanam region, costal Srikakulam, Andhra Pradesh, India.

  5. Raju TP, NG C, Srinivasu C, Ramanamam V, Ram SS, Sudarshan M, et al. Trace elemental analysis of soil samples of kidney effected area using EDXRF technique. International Journal of Scientific & Engineering Research. 2015;6(Issue):1472–9.

    Google Scholar 

  6. Gadde P, Sanikommu S, Manumanthu R, Akkaloori A. Uddanam nephropathy in India: a challenge for epidemiologists. Bull World Health Organ. 2017;95(12):848–9. https://doi.org/10.2471/BLT.17.196758.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32(6):921–31.

    Article  Google Scholar 

  8. Armani R, Ramezani A, Yasir A, Sharama S, Canziani M, Raj D. Gut microbiome in chronic kidney disease. Curr Hypertens Rep. 2017;19(4):29.

    Article  CAS  Google Scholar 

  9. Kelsey R. Gut microbiome is unique in kidney stone disease. Nature Reviews Urology. 2016;13(7):368–9.

    Article  CAS  Google Scholar 

  10. Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. American Journal of Physiology-Renal Physiology. 2016;310(9):F857–F71.

    Article  CAS  Google Scholar 

  11. Lau WL, Vaziri ND. The leaky gut and altered microbiome in chronic kidney disease. J Ren Nutr. 2017;27(6):458–61.

    Article  CAS  Google Scholar 

  12. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37.

    Article  CAS  Google Scholar 

  13. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. Journal of the American Society of Nephrology. 2013:ASN. 2013080905.

  14. Vasylyeva TL, Singh R. Gut microbiome and kidney disease in pediatrics: does connection exist? Front Microbiol. 2016;7:235.

    Article  Google Scholar 

  15. Wing MR, Patel SS, Ramezani A, Raj DS. Gut microbiome in chronic kidney disease. Exp Physiol. 2016;101(4):471–7.

    Article  CAS  Google Scholar 

  16. Weaver VM, Fadrowski JJ, Jaar BG. Global dimensions of chronic kidney disease of unknown etiology (CKDu): a modern era environmental and/or occupational nephropathy? BMC Nephrol. 2015;16(1):145.

    Article  Google Scholar 

  17. Levey AS, Coresh J, Bolton K, Culleton B, Harvey KS, Ikizler TA et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. American Journal of Kidney Diseases. 2002;39(2 SUPPL. 1).

  18. Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, Wang S, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7(1):1445.

    Article  Google Scholar 

  19. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci. 2010;107(26):11971–5.

    Article  Google Scholar 

  20. Simenhoff M, Dunn S, Zollner G, Fitzpatrick M, Emery S, Sandine W, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22(1–3):92–6.

    CAS  PubMed  Google Scholar 

  21. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 2012;129(5):1204–8.

    Article  Google Scholar 

  22. Al Khodor S, Reichert B, Shatat IF. The microbiome and blood pressure: can microbes regulate our blood pressure? Fron Ped. 2017;5:138.

    Article  Google Scholar 

  23. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007;104(34):13780–5.

    Article  CAS  Google Scholar 

  24. Gunzburg R. Adolescent idiopathic scoliosis: 70% agreement in expert opinion? : Springer; 2014.

  25. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron. 1996;74(2):349–55.

    Article  CAS  Google Scholar 

  26. Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–35.

    Article  CAS  Google Scholar 

  27. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  Google Scholar 

  28. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  Google Scholar 

  29. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    Article  CAS  Google Scholar 

  30. Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, et al. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal. 2011;25(3):191–7.

    Article  CAS  Google Scholar 

  31. Wu I-W, Hsu K-H, Lee C-C, Sun C-Y, Hsu H-J, Tsai C-J, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2010;26(3):938–47.

    Article  CAS  Google Scholar 

  32. Guldris SC, Parra EG, Amenós AC. Gut microbiota in chronic kidney disease. Nefrología (English Edition). 2017;37(1):9–19.

    Article  Google Scholar 

  33. Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, Ardalan M, Zununi VS. The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharmacother = Biomedecine & pharmacotherapie. 2017;93:412–9. https://doi.org/10.1016/j.biopha.2017.06.066.

    Article  CAS  Google Scholar 

  34. Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol. 2018;50(2):289–99.

    Article  CAS  Google Scholar 

  35. Colares VS, Titan SM, Pereira Ada C, Malafronte P, Cardena MM, Santos S, et al. MYH9 and APOL1 gene polymorphisms and the risk of CKD in patients with lupus nephritis from an admixture population. PLoS One. 2014;9(3):e87716. https://doi.org/10.1371/journal.pone.0087716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–50. https://doi.org/10.1007/s00439-010-0861-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genovese G, Tonna SJ, Knob AU, Appel GB, Katz A, Bernhardy AJ, et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 2010;78(7):698–704. https://doi.org/10.1038/ki.2010.251.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bostrom MA, Freedman BI. The spectrum of MYH9-associated nephropathy. Clinical journal of the American Society of Nephrology : CJASN. 2010;5(6):1107–13. https://doi.org/10.2215/CJN.08721209.

    Article  CAS  PubMed  Google Scholar 

  39. Friedman DJ, Pollak MR. Apolipoprotein L1 and kidney disease in African Americans. Trends Endocrinol Metab. 2016;27(4):204–15. https://doi.org/10.1016/j.tem.2016.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96. https://doi.org/10.1056/NEJMoa1310345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yadav AK, Kumar V, Sinha N, Jha V. APOL1 risk allele variants are absent in Indian patients with chronic kidney disease. Kidney Int. 2016;90(4):906–7. https://doi.org/10.1016/j.kint.2016.07.026.

    Article  PubMed  Google Scholar 

  42. Johnstone DB, Shegokar V, Nihalani D, Rathore YS, Mallik L, Ashish ZV, et al. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis. PLoS One. 2012;7(12):e51546. https://doi.org/10.1371/journal.pone.0051546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks the Institute of Bioinformatics and Computational Biology (IBCB), Visakhapatnam, Andhra Pradesh, India, for its help in securing the news for local incidences of this study. The corresponding is also thankful for Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, Telangana for providing the facilities to communicate this manuscript.

Funding

Research in YA lab is funded by the Department of Biotechnology (Ministry of Science & Technology, Government of India) and Indian Council of Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Parvati Sai Arun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvati Sai Arun, P.V., Obula Reddy, C. & Akhter, Y. Uddanam Kidney Nephropathy Under the Light of Metagenomics Perspective. SN Compr. Clin. Med. 1, 23–25 (2019). https://doi.org/10.1007/s42399-018-0008-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-018-0008-5

Keywords

Navigation