Skip to main content
Log in

Assessment of bacoside production, total phenol content and antioxidant potential of elicited and non-elicited shoot cultures of Bacopa monnieri (L.)

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Thirteen accessions of Bacopa monnieri (L.) Wettst. were assessed for in vitro propagation, total bacosides, total phenol content and antioxidant potential. Nodal explants were cultured on Murashige and Skoog (MS) medium with 0.4 mg/L benzyl aminopurine (BA) to identify best accession based on growth parameters. The selected accession (IC 554588) was elicited with 1 mg/L of jasmonic acid, salicylic acid or malt extract to assess its efficacy in enhancing secondary metabolites production in in vitro cultures. Elicitor-treated plants showed increased production of bacosides (2.7–3.9 fold), total phenol content (5–18 fold) and higher antioxidant potential (7.9 fold) in 4 weeks. According to statistical analysis, antioxidant potential is highly correlated to total phenol as R-sq (adj) is 90.1%. Data was subjected to correlation, Principal Component Analysis (PCA) and cluster analysis to understand the relationship between different variables and identify major contributors of variability. Strong correlation between total bacoside, total phenol, and antioxidant activity indicate that elevated antioxidant potential was the result of overall increase in bacoside and phenol content, which can be enhanced by the application of elicitors. The study suggested that accessions IC 554588, IC 344312 and IC 554585 are elite and may be utilized for various pharmacopeias after further in vivo research and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad S, Garg M, Tamboli ET, Abdin MZ, Ansari SH (2013) In vitro production of alkaloids: factors, approaches, challenges, and prospects. Pharmacogn Rev 7:27–33. https://doi.org/10.4103/0973-7847.112837

    Article  CAS  Google Scholar 

  • Alamgir ANM, Rahman A, Rahman M (2014) Secondary metabolites and antioxidant activity of the crude leaf extract of Bacopa monniera (L.) Pennel. and Coccinia grandis (L.). J Pharmacog Phytochem 3:226–230

    Google Scholar 

  • Ali M, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induce ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 25:613–620. https://doi.org/10.1007/s00299-005-0065-6

    Article  CAS  Google Scholar 

  • Anbarasi K, Vani G, Balakrishna K, Desai CS (2005) Creatine kinase isoenzyme patterns upon chronic exposure to cigarette smoke: protective effect of Bacoside A. Vascul Pharmacol 42:57–61. https://doi.org/10.1016/j.vph.2005.01.003

    Article  CAS  Google Scholar 

  • Anbarasi K, Vani G, Balakrishna K, Devi CS (2006) Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci 78:1378–1384

    Article  CAS  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and Vitamins A and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agri Food Chem 52:7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  Google Scholar 

  • Atoui AK, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 89:27–36. https://doi.org/10.1016/j.foodchem.2004.01.075

    Article  CAS  Google Scholar 

  • Basu N, Rastogi RP, Dhar ML (1967) Chemical examination of Bacopa monniera Wettst: part III, bacoside B. Indian J Chem 5:84–86

    CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Technologie 28:25–30

    Article  CAS  Google Scholar 

  • Chen CH, Pearson AM, Gray JI (1992) Effects of synthetic antioxidants (BHA, BHT, and PG) on the mutagenicity of IQ-like compounds. Food Chem 43:177–183

    Article  CAS  Google Scholar 

  • Chen CH, Chan CH, Chu YT, Ho HY, Chen PY, Lee TH, Lee CK (2009) Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase, and tyrosinase. Molecules 14:2947–2958. https://doi.org/10.3390/molecules14082947

    Article  CAS  Google Scholar 

  • Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukherjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in vitro raised B. monnieri (L.) Wettest. South Afr J Bot 123:259–269

    Article  CAS  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  CAS  Google Scholar 

  • Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. Adv Agron 124:201–230. https://doi.org/10.4103/0973-1296.185726

    Article  CAS  Google Scholar 

  • Gottlieb OR, Borin MR (2000) Medicinal products: regulation of biosynthesis in space and time. Mem Inst Oswaldo Cruz 95:115–120

    Article  CAS  Google Scholar 

  • Hazra S, Bhattacharyya D, Chattopadhyay S (2017) Methyl jasmonate regulates podophyllotoxin accumulation in podophyllum hexandrum by altering the ros-responsive podophyllotoxin pathway gene expression additionally through the down regulation of few interfering miRNAs. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.00164

    Article  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward the production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20. https://doi.org/10.1007/s10499-014-9870-7

    Article  CAS  Google Scholar 

  • Jain P, Sharma HP, Basri F, Priya K, Singh P (2017) Phytochemical analysis of Bacopa monnieri (L.) Wettst. and their antifungal activities. Indian J Tradit Knowl 16:310–318

    Google Scholar 

  • Jauhari N, Bharadvaja N, Sharma N (2016) One step to conserve medicinally important plant Bacopa monnieri through rapid and cost-effective in vitro propagation. Progress Agric 16:8–15. https://doi.org/10.5958/0976-4615.2016.00002.8

    Article  Google Scholar 

  • Kapoor LD (1990) CRC handbook of ayurvedic medicinal plants. CRC Press, Boca Raton

    Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MU, Venkat RG (2016) Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: a six-week, randomized placebo-controlled trial. Evid Based Complement Alternat Med. https://doi.org/10.1155/2016/4103423

    Article  Google Scholar 

  • Kundu K, Roy A, Saxena G, Kumar L, Bharadvaja N (2016) Effect of different carbon sources and elicitors on shoot multiplication in accessions of Centella asiatica. Med Aromat Plants 5:251–255. https://doi.org/10.4172/2167-0412.1000251

    Article  CAS  Google Scholar 

  • Largia J, Pothiraj G, Shilpa J, Ramesh M (2015) Methyl jasmonate and salicylic acid synergism enhance bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tiss Organ Cul 122:9–20. https://doi.org/10.1007/s11240-015-0745-z

    Article  CAS  Google Scholar 

  • Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative Nutraceuticals. Compr Rev Food Sci Food Saf 3:21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

    Article  CAS  Google Scholar 

  • Leonard J, Seth B, Sahu BB, Singh VR, Patra N (2018) Statistical optimization for enhanced bacoside A production in plant cell cultures of B. monneiri. Plant Cell Tiss Organ Cult 133:203–214

    Article  CAS  Google Scholar 

  • Madhu K, Prakash T, Maya S (2019) Bacoside-A inhibits inflammatory cytokines and chemokine in the experimental autoimmune encephalomyelitis. Biomed Pharmacoth 109:1339–1345

    Article  CAS  Google Scholar 

  • Mangas S, Moyano E, Hernández-Vázquez L, Bonfill M (2009) Centella asiatica (L) Urban: an updated approach. Plant secondary terpenoids. Research Signpost, Trivandrum, pp 55–74

    Google Scholar 

  • Mangathayaru K (2013) Pharmacognosy: an Indian perspective, 1st edn. Pearson

  • Meena H, Pandey HK, Pandey P, Arya MC, Ahmed Z (2012) Evaluation of antioxidant activity of two important memory enhancing medicinal plants Bacopa monnieri and Centella asiatica. Indian J Pharmacol 44:114–117. https://doi.org/10.4103/0253-7613.91880

    Article  Google Scholar 

  • Mendoza D, Cuaspud O, Arias JP, Ruiz O, Arias M (2018) Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol Rep (Amst) 19:e00273. https://doi.org/10.1016/j.btre.2018.e00273

    Article  Google Scholar 

  • Mishra A, Mishra AK, Tiwari OP, Jha S (2013) HPLC analysis and standardization of Brahmi vati—an ayurvedic poly-herbal formulation. J Young Pharm 5:77–82. https://doi.org/10.1016/j.jyp.2013.09.001

    Article  CAS  Google Scholar 

  • Mukherjee S, Dugad S, Bhandari R, Pawar N, Jagtap S, Pawar PK, Kulkarni O (2011) Evaluation of comparative free-radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica). Ayu 32:258–264. https://doi.org/10.4103/0974-8520.92549

    Article  Google Scholar 

  • Mundkinajeddu D, Sangli GK, Chandrasekharappa AP, Agarwal A (2005) Quantitative determination of the major saponin mixture Bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29. https://doi.org/10.1002/pca.805

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murthy PBS, Raju VR, Ramakrisana T, Chakravarthy MS, Kumar KV, Kannababu S, Subbaraju GV (2006) Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chem Pharm Bull 54:907–911

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Phcog Rev 1:69–79

    CAS  Google Scholar 

  • National Medicinal Plant Board (2019) Government of India, New Delhi, India. Accessed May 2019

  • Pal R, Dwivedi AK, Singh S, Kulshrestha DK (1998) High performance liquid chromatographic (HPLC) quantification of bacosides in Bacopa monnieri extracts. Indian J Pharm Sci 60:328–329

    CAS  Google Scholar 

  • Pawar R, Gopalakrishnan C, Bhutani KK (2001) Dammarane triterpene saponin from Bacopa monniera as the superoxide inhibitor in polymorphonuclear cells. Planta Med 67:752–754. https://doi.org/10.1055/s-2001-18351

    Article  CAS  Google Scholar 

  • Rahnamaie-Tajadod R, Loke K, Goh H, Noor NM (2017) Differential gene expression analysis in polygonum minus leaf upon 24 h of methyl jasmonate elicitation. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00109

    Article  Google Scholar 

  • Roodernrys S, Booth D, Bulzomi S, Phipps A et al (2002) Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 27:279–281. https://doi.org/10.1016/S0893-133X(01)00419-5

    Article  Google Scholar 

  • Russo A, Izzo AA, Borrelli F, Renis M, Vanella A (2003) Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytother Res 17:870–875. https://doi.org/10.1002/ptr.1061

    Article  Google Scholar 

  • Saeed S, Ali H, Khan T, Kayani W, Khan MA (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23:229–237. https://doi.org/10.1007/s12298-016-0406-7

    Article  CAS  Google Scholar 

  • Sairam K, Dorababu M, Goel RK, Bhattacharya SK (2002) Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 9:207–211. https://doi.org/10.1078/0944-7113-00116

    Article  CAS  Google Scholar 

  • Saxen A, Gautam S, Arya KR, Singh RK (2016) Comparative study of phytochemicals, antioxidant potential and activity of enzymatic antioxidants of Eclipta alba and Plumbago zeylanica by in vitro assays. Free Rad Antiox 6:139–144. https://doi.org/10.5530/fra.2016.2.2

    Article  CAS  Google Scholar 

  • Shabani L, Ehsanpour A, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russ J Plant Physol 56:621–626

    Article  CAS  Google Scholar 

  • Shahid M, Subhan F, Ahmad N, Ullah I (2017) A bacosides containing Bacopa monnieri extract alleviates allodynia and hyperalgesia in the chronic constriction injury model of neuropathic pain in rats. BMC Complement Altern Med 17:293–305. https://doi.org/10.1186/s12906-017-1807-z

    Article  CAS  Google Scholar 

  • Sharma N, Satsangi R, Pandey R, Devi SV (2007) In vitro clonal propagation and medium term conservation of Brahmi [Bacopa monnieri (L.) Wettst]. J Plant Biochem Biotech 16:139–143. https://doi.org/10.1007/978-1-4939-3332-7_11

    Article  CAS  Google Scholar 

  • Sharma N, Satsangi R, Pandey R, Singh R, Kaushik N, Tyagi RK (2012) In vitro conservation of Bacopa monnieri (L.) using mineral oil. Plant Cell Tiss Organ Cult 111:291–301. https://doi.org/10.1007/s11240-012-0194-x

    Article  CAS  Google Scholar 

  • Sharma P, Yadav S, Srivastava A, Srivastava N (2013) Methyl jasmonate mediates upregulation of bacoside A production in shoot cultures of Bacopa monnieri. Biotech Lett 35:1121–1125. https://doi.org/10.1007/s10529-013-1178-6

    Article  CAS  Google Scholar 

  • Sharma M, Ahuja A, Gupta R, Mallubhotla S (2015) Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Nat Prod Res 29:745–749. https://doi.org/10.1080/14786419.2014.986657

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:265–275. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  • Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP (1996) Bacopa monniera Linn. as an antioxidant: mechanism of action. Indian J Exp Biol 34:523–526

    CAS  Google Scholar 

  • Verma P, Mathur AK, Jain SP, Mathur A (2012) In vitro conservation of twenty-three overexploited medicinal plants belonging to the Indian subcontinent. Sci World J 15:85. https://doi.org/10.1100/2012/929650(Article ID 929650)

    Article  Google Scholar 

  • Walton NJ, Brown DE (1999) Chemicals from plants: perspectives on plant secondary product. Imperial College Press, London

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Vice Chancellor of Delhi Technological University, Delhi, India for constant support and encouragement in conducting this study. We are also thankful to Dr. Ram Singh, Assistant Professor (Applied Chemistry) and his advisee Dr. Atya and Dr. Gitika (Applied Chemistry), Delhi Technological University for their help in performing HPLC.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Experimental strategy belongs to NB, NS and NJ. NJ and RB performed experiment. RB did statistical analysis.

Corresponding author

Correspondence to Navneeta Bharadvaja.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauhari, N., Bharadwaj, R., Sharma, N. et al. Assessment of bacoside production, total phenol content and antioxidant potential of elicited and non-elicited shoot cultures of Bacopa monnieri (L.). Environmental Sustainability 2, 441–453 (2019). https://doi.org/10.1007/s42398-019-00071-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00071-3

Keywords

Navigation