Skip to main content
Log in

Chromium phytoaccumulation and its impact on growth and photosynthetic pigments of Spirodela polyrrhiza (L.) Schleid. on exposure to tannery effluent

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Spirodela polyrrhiza (L.) Schleid. (giant duckweed)—a widespread aquatic macrophyte was found to be a potential chromium bioaccumulator in the present study. To assess the tolerance and hyperaccumulation of chromium by S. polyrrhiza, the plants were exposed to 25, 50, 75, and 100% concentrations of tannery effluent under laboratory conditions for 7 days. Significant toxic effects on the S. polyrrhiza plant were observed, as revealed by reduction in growth parameters as well as photosynthetic pigments in comparison to the control. Despite exhibiting severe phytotoxicity symptoms, the roots and fronds of S. polyrrhiza accumulated the highest amount of chromium on exposure to 100% tannery effluent (roots: 64,841.8 mg g−1; fronds: 10,478.4 mg g−1) after 7 days of exposure. Our results point to S. polyrrhiza as a proficient species to be used in the exploration of chromium hyperaccumulation as well as a prospective contender for tannery wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adki VS, Jadhav JP, Vishwas A, Bapat VA (2013) Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association Inc., New York

    Google Scholar 

  • Appenroth KJ, Stoeckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083

    Article  CAS  Google Scholar 

  • Beggs CJ, Wellmann E (1985) Analysis of light controlled anthocyanin formation in coleoptiles of Zea mays L.: the role of UV–B, blue, red and far-red light. Photochem Photobiol 41:481–486

    Article  CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55:404–414

    Article  CAS  Google Scholar 

  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327

    Article  Google Scholar 

  • Chaudhary E, Sharma P (2019) Chromium and cadmium removal from wastewater using duckweed—Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int J Phytoremediat 21(3):279–286

    Article  CAS  Google Scholar 

  • Dan P, Mandal S, De A, Mandal S (2016) Studies on the toxicity of chromium(VI) to Pistia stratiotes L. plant and its removal. Int J Curr Microbiol Appl Sci 5(6):975–982

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2007) Metal accumulation in A. baccifera growing naturally on abandoned copper tailings pond. Environ Monit Assess 127:119–125

    Article  CAS  Google Scholar 

  • Di Luca GA, Hadad HR, Mufarrege MM, Maine MA, Sanchez GC (2014) Improvement of Cr phytoremediation by Pistia stratiotes in presence of nutrients. Int J Phytoremediat 16(2):167–178

    Article  CAS  Google Scholar 

  • Duxbury AC, Yentsch CS (1956) Plankton pigment monograph. J Mar Res 15:92–101

    CAS  Google Scholar 

  • EPA USA Environmental Protection Agency, United States of America (1984) Health assessment for chromium. Final Report, EPA Publication No EPA–600/8-83-014F. US Environment Protection Agency, Washington DC

    Google Scholar 

  • Gardea-Torresdey JL, Gonzalez JH, Tiemann KJ, Rodriguez O, Gamez G (1998) Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa). J Hazard Mater 57:29–39

    Article  CAS  Google Scholar 

  • GracePavithra K, Jaikumar V, Kumar PS, SundarRajan P (2019) A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J Clean Prod 228:580–593

    Article  CAS  Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plant. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, pp 1–28. ISBN: 3-540-65469-0

  • Greger M (2005) Influence of Willow (Salix viminals L.) roots on soil metal chemistry: effects of clones with varying metal uptake potential. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier Ltd, pp 301–312

  • Gupta AK, Sinha S (2007) Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Bioresour Technol 98:442–446

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  Google Scholar 

  • Jena P, Pradhan C, Kumar Patra H (2016) Cr+6 induced growth, biochemical alterations and chromium bioaccumulation in Cassia tora (L.) Roxb. Ann Plant Sci 5(7):1368–1373

    Article  Google Scholar 

  • Kale RA, Lokhande VH, Ade AB (2015) Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water Environ J 29(2):236–242

    Article  CAS  Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648

    Article  CAS  Google Scholar 

  • Kumar P, Chandra R (2004) Detoxification of Distillery effluent through Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential of Spirodela polyrrhiza (L.) Schliden. Bull Environ Contam Toxicol 73:903–910

    Article  CAS  Google Scholar 

  • Kumar D, Bharti SK, Anand S, Kumar N (2018) Bioaccumulation and biochemical responses of Vetiveria zizanioides grown under cadmium and copper stress. Environ Sustain 1:133–139

    Article  Google Scholar 

  • Kumar V, Singh J, Saini A, Kumar P (2019) Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ Sustain 2:55–65

    Article  Google Scholar 

  • Li TY, Xiong ZT (2004a) A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Environ Toxicol 19:95–102

    Article  CAS  Google Scholar 

  • Li TY, Xiong ZT (2004b) Cadmium-induced colony disintegration of duckweed (Lemna paucicostata Hegelm.) and as biomarker of phytotoxicity. Ecotoxicol Environ Saf 59:174–179

    Article  CAS  Google Scholar 

  • Lin H, Liu J, Dong Y, Ren K, Zhang Y (2018) Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1785-9

    Article  Google Scholar 

  • Malaviya P, Sharma A (2011) Effect of distillery effluents on yield attributes of Brassica napus L. J Environ Biol 32:385–389

    Google Scholar 

  • Malaviya P, Singh A (2011) Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol 41:1111–1172

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2012a) Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2012b) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–2214

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42(4):607–633

    CAS  Google Scholar 

  • Mant C, Costa S, William J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:1767–1772

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, Cambridge

    Google Scholar 

  • Monferrán MV, Pignata ML, Wunderlin DA (2012) Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper. Environ Pollut 161:15–22

    Article  CAS  Google Scholar 

  • Nichols PB, Couch JD, Al Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    Article  CAS  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2005) Biochemical effects of trivalent chromium on Cyanopsis tetragonoloba seedlings. Ind J Environ Prot 25:577–582

    CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2004) Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ Sci Technol 38:4860–4864

    Article  CAS  Google Scholar 

  • Porath D, Pollock J (1982) Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquat Bot 13:125–131

    Article  CAS  Google Scholar 

  • Rai PK (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100393

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin H, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Satyakala G, Jamil K (1992) Chromium induced biochemical changes in Eichhornia crassipes (Mart) Solms. and Pistia stratiotes L. Bull Environ Contam Toxicol 48:921–928

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sharma YC, Singh B, Agrawal A, Weng CH (2008) Removal of chromium by riverbed sand from water and wastewater: effect of important parameters. J Hazard Mater 151:781–793

    Article  CAS  Google Scholar 

  • Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257

    Article  CAS  Google Scholar 

  • Singh A, Malaviya P (2013) Phytotoxic effect of chrome liquor on growth and chlorophyll content of Spirodela polyrrhiza L. Schleid. J Appl Nat Sci 5:165–170

    Article  Google Scholar 

  • Singh A, Vyas D, Malaviya P (2016) Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria. Bioresour Technol 216:883–893

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environ Monit Assess 80:17–31

    Article  CAS  Google Scholar 

  • Sinha S, Basant A, Malik A, Singh KP (2009) Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicol 18:555–566

    Article  CAS  Google Scholar 

  • Suseela MR, Sinha S, Singh S, Saxena R (2002) Accumulation of chromium and scanning electron microscopic studies in Scirpus lacustris L. treated with metal and tannery effluent. Bull Environ Contam Toxicol 68:540–548

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    Article  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2001) Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67:246–256

    CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • WHO, World Health Organization (1988) Chromium. Environmental Health Criteria 61. Geneva

  • Yamada Y, Bukovac MJ, Wittwer SH (1964) Ion binding by surfaces of isolated cuticular membranes. Plant Physiol 39:978–982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (PM) acknowledges the financial support in the form of a research project provided by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Malaviya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Malaviya, P. Chromium phytoaccumulation and its impact on growth and photosynthetic pigments of Spirodela polyrrhiza (L.) Schleid. on exposure to tannery effluent. Environmental Sustainability 2, 157–166 (2019). https://doi.org/10.1007/s42398-019-00062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00062-4

Keywords

Navigation