Skip to main content

Advertisement

Log in

Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Abiotic stresses have adverse effects on the plant growth and productivity. Over the last decades, scientists have been intrigued by the fascinating microorganisms that exist in the rhizosphere of plants growing under extreme environments. Members of bacterial phyla Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes and archaeal phyla Euryarchaeota and Crenarchaeota are found to be more abundant in the rhizosphere of plants growing in extreme environments. Rhizosphere microbiomes enhance plant growth under abiotic stresses by nitrogen fixation, phytohormones production, mineral solubilization, siderophores and HCN production and eliciting plant defense mechanisms against different bacterial and fungal pathogens. Meta-omics techniques such as metagenomics, metatranscriptomics and metaproteomics can also be used to study complex processes involved in microbe-mediated stress alleviation in different plants growing in extreme environments. These approaches generate multi-layered information that can lead to massive outcomes; hence, there are more chances for implementation in this field. This review summarizes the information about the archaeal and bacterial diversity living in the root microbiome of plants growing under extreme conditions. We also described different mechanisms about role of plant growth promoting microorganisms under abiotic stresses and highlighted the applications of meta-omics approaches to explain further advancement in plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad M, Kebret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Al-Hassan JM, Al-Awadi S, Oommen S, Alkhamis A, Afzal M (2011) Tryptophan oxidative metabolism catalyzed by Geobacillus stearothermophilus: a thermophile isolated from Kuwait soil contaminated with petroleum hydrocarbons. Int J Tryptophan Res 4:1–6

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soil 46:45–55

    Article  CAS  Google Scholar 

  • Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bhatnagar A, Bhatnagar M (2009) Microbial diversity in desert ecosystems. Curr Sci 89:91–100

    Google Scholar 

  • Broaders E, O’Brien C, Cormac Gahan GM, Marchesi JR (2016) Evidence for plasmid-mediated salt tolerance in the human gut microbiome and potential mechanisms. FEMS Microbiol Ecol 92:1–8

    Article  CAS  Google Scholar 

  • Browne P, Rice O, Miller SH et al (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138

    Article  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Loren Ver, van Themaat E, Ahmadinejad N, Assenza F (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  Google Scholar 

  • Buyanovsky G, Dicke M, Berwick P (1982) Soil environment and activity of soil microflora in the Negev desert. J Arid Environ 5:13–28

    Article  Google Scholar 

  • Castro AP, Sartori A, Silva MR, Quirino BF, Kruger RH (2013) Combining “omics” strategies to analyze the biotechnological potential of complex microbial environments. Curr Protein Pept Sci 14:447–458

    Article  CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR et al (2014) Plant growth promoting bacteria facilitate the growth of barley and oats in salt impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133–1147

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  Google Scholar 

  • Dang P, Yu X, Le H, Liu J, Shen Z, Zhao Z (2017) Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One 12:e0186501

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  Google Scholar 

  • Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant Microbe Interact 29:484–495

    Article  CAS  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22

    Article  CAS  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  Google Scholar 

  • Feliatra F, Lukistyowati I, Yoswaty D, Rerian H, Melina D, Hasyim W, Nugroho TT, Fauzi AR, Yolanda R (2016) Phylogenetic analysis to compare populations of acid tolerant bacteria isolated from the gastrointestinal tract of two different prawn species Macrobrachium rosenbergii and Penaeus monodon. AACL Bioflux 9:360–368

    Google Scholar 

  • Ferjani R, Marasco R, Rolli E, Cherife H et al (2015) The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. Biomed Res Int 2015:153851

    Article  Google Scholar 

  • Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publ Corp Sci 2012:23–30

    Google Scholar 

  • Grant WD, Sorokin DY (2011) Distribution and diversity of soda lake Alkaliphiles. In: Horikoshi K (ed) Extremophiles Handbook. Springer, Tokyo, pp 27–54

    Chapter  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Can J Microbiol 47:77–80

    Article  Google Scholar 

  • Hamdi Y, Yousef AN (1979) Nitrogen fixers in the rhizosphere of certain desert plants. Zentralbl Bakteriol Naturwiss 134:19–24

    CAS  Google Scholar 

  • Jaisingh R, Kumar A, Dhiman M (2016) Isolation and characterization of PGPR from rhizosphere of Sesame indicum L. Int J Adv Res Biol Sci 3:238–244

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Kosova K, Vitamvas P, Urban MO, Klima M, Roy A, Prasil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops- a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017) Drought tolerant phosphorus solubilizing microbes: diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceedings of national conference on advances in food science and technology, pp 166–167

  • Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478

    Article  CAS  Google Scholar 

  • Kumar A, Prakash A, Johri B (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems, vol 201. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Liljeqvist M, Ossandon FJ, Gonzalez C, Rajan S, Stell A, Valdes J et al (2015) Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91:fiv011

    Article  Google Scholar 

  • Lim JH, Kem SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  Google Scholar 

  • Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    Article  CAS  Google Scholar 

  • Liu Z, Li Y, Cao H, Ren D (2015) Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9–MPK6 cascade in Arabidopsis. Plant Sci 241:138–150

    Article  CAS  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasool G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant growth promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M et al (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:248078

    Article  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  Google Scholar 

  • Moraes RM, Melo IS, Samyanto J, Chandra S, Joshi V (2012) Bacterial community associated with autotrophic and heterotrophic cultures of medicinal plant Smallanthus sonchifolius (Yacon). Am J Plant Sci 3:1382–1389

    Article  Google Scholar 

  • Morozova D, Wagner D (2007) Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiol Ecol 61:16–25

    Article  CAS  Google Scholar 

  • Mukhtar S, Mirza MS, Awan HA, Maqbool A, Mehnaz S, Malik KA (2016) Microbial diversity and metagenomic analysis of the rhizosphere of Para Grass (Urochloa mutica) growing under saline conditions. Pak J Bot 48:779–791

    CAS  Google Scholar 

  • Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA (2017) Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol J Microbiol 66:375–386

    Article  Google Scholar 

  • Mukhtar S, Kauser AM, Samina M (2018a) Isolation and characterization of haloalkaliphilic bacteria isolated from the rhizosphere of Dichanthium annulatum. J Adv Res Biotechnol 3:1–9

    Article  Google Scholar 

  • Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM (2018b) Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J Microbiol Biotechnol 34:136

    Article  CAS  Google Scholar 

  • Mukhtar S, Mirza MS, Mehnaz S, Mirza BS, Malik KA (2018c) Diversity of Bacillus-like bacterial community in the rhizospheric and nonrhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola) and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 64:567–579

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193:665–676

    Article  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA et al (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks Veg Sci 44:133–147

    Article  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. In: Abdurakhmonov IY (ed) Plant genomics. InTech, Rijeka

    Google Scholar 

  • Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Microbiol 33:119–124

    CAS  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  Google Scholar 

  • Panlada T, Pongdet P, Aphakorn L, Rujirek NN, Nantakorn B, Neung T (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571

    Article  CAS  Google Scholar 

  • Pitman MG, Lauchl A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttage U (eds) Salinity: environment–plants–molecules. Kluwer Academic Publishers, Amsterdam, pp 3–20

    Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceedings of national conference on advances in food science and technology, pp 41–42

  • Remans R, Ramaekers L, Shelkens S, Hernandez G et al (2008) Effect of Rhizobium, Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Rueda-Puente E, Castellanos-Cervantes T, Diaz de Leon-Alvarez J, Preciado-Rangel P, Almaguer-Vargas G (2010) Bacterial community of rhizosphere associated to the annual halophyte Salicornia bigelovii (Torr.). Terra Latinoamericana 28:345–353

    Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  Google Scholar 

  • Sati P, Dhakar K, Pandey A (2013) Microbial diversity in soil under potato cultivation from Cold Desert Himalaya, India. Hindawi Publ Corp ISRN Biodivers 2013:767453

    Google Scholar 

  • Saxena AK, Kaushik R, Yadav AN, Gulati S, Sharma D (2015a) Role of Archaea in sustenance of plants in extreme saline environments. In: Proceedings of 56th AMI-2015 and international symposium on “Emerging Discoveries in Microbiology”. https://doi.org/10.13140/rg.2.1.2073.9925

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  CAS  Google Scholar 

  • Seker MG, Sah I, Kırdök E, Ekinci H, Çiftçi YO, Akkaya O (2017) A hidden plant growth promoting bacterium isolated from in vitro cultures of Fraser Photinia (Photinia fraseri). Int J Agric Biol 19:1511–1519

    CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T et al (2012) Functional characteristics of an endophyte community colonizing roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54

    Article  CAS  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  Google Scholar 

  • Steinberger Y, Degani R, Barnen G (1995) Decomposition of root litter and related microbial population dynamics of a Negev desert shrub, Zygophyllum dumosum. J Arid Environ 31:383–389

    Article  Google Scholar 

  • Susilowati DN, Sudiana IM, Mubarik NR, Suwanto A (2015) Species and functional diversity of rhizobacteria of rice plant in the coastal soils of Indonesia. Indones J Agric Sci 16:39–51

    Article  CAS  Google Scholar 

  • Swaine EK, Swaine MD, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings on different provenances. Agroforest Syst 69:135–145

    Article  Google Scholar 

  • Tani C, Sasakawa H, Takenouchi K (2003) Isolation of endophytic Frankia from root nodules of Casuarina equisetifolia and infectivity of the isolate to host plants. Soil Sci Plant Nutr 49:137–142

    Article  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  Google Scholar 

  • Tiago I, Chung AP, Verissimo A (2004) Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70:7378–7387

    Article  CAS  Google Scholar 

  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acido-tolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat ( L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58

    Article  CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Krishna R, Prakash S, Yadav J, Singh V (2018) Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh Region of India. Front Microbiol 9:1293

    Article  Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol 58:425–434

    Article  CAS  Google Scholar 

  • Wang Y, Ke X, Wu L, Lu Y (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32:27–36

    Article  CAS  Google Scholar 

  • Wang Y, Hu B, Du S, Gao S, Chen X, Chen D (2016) Proteomic analyses reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS One 11:e0153640

    Article  CAS  Google Scholar 

  • Wellner S, Lodders N, Kämpfer P (2011) Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. Syst Appl Microbiol 34:621–630

    Article  CAS  Google Scholar 

  • Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trend Microbiol 14:92–97

    Article  CAS  Google Scholar 

  • Xu Z, Shimizu H, Ito S, Yagasaki Y, Zou C, Zhou G et al (2014) Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239:421–435

    Article  CAS  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R et al (2015b) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2015c) Microbes mediated alleviation of cold stress for growth and yield of wheat (Triticum aestivum L.). In: Proceedings of international conference on “Low Temperature Science and Biotechnological Advances”. https://doi.org/10.13140/rg.2.1.2374.2883

  • Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  Google Scholar 

  • Yuan M, Chen M, Zhang W, Wei L et al (2012) Genome sequence and transcriptome analysis of the radio-resistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS One 7:e34458

    Article  CAS  Google Scholar 

  • Zawadzka M, Trzciński P, Nowak K, Orlikowska T (2014) The impact of three bacteria isolated from contaminated plant cultures on in vitro multiplication and rooting of microshoots of four ornamental plants. J Hortic Res 21:41–51

    Article  Google Scholar 

  • Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–11

    Article  CAS  Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, Rizvi MA, Ali A (2009) Metagenomics—an advanced approach for non-cultivable microorganisms. Biotechnol Mol Biol Rev 4:49–54

    CAS  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li X et al (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  Google Scholar 

  • Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73:574–581

    Article  CAS  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6:e02288–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are highly thankful to Higher Education Commission [Project # HEC (FD/2012/1843)] for research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kauser Abdulla Malik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtar, S., Mehnaz, S. & Malik, K.A. Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environmental Sustainability 2, 329–338 (2019). https://doi.org/10.1007/s42398-019-00061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00061-5

Keywords

Navigation