Skip to main content
Log in

Talaromyces trachyspermus, an endophyte from Withania somnifera with plant growth promoting attributes

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

The medicinal plant, Withania somnifera is attributed by valuable medicinal properties and is widely cultivated. It is a need to take care of this plant from synthetic agrochemicals that may be hazardous for health and environment. The aim of the present study was to isolate and screen the endophytic fungi of W. somnifera that  have potential of plant growth promotion and antagonism against plant pathogens. In this study, 22 potential fungal endophytes comprising of species of Alternaria, Aspergillus, Fusarium, Nigrospora, Colletotrichum and Talaromyces identified at National Fungal Culture Collection of India (NFCCI), Pune were isolated. The potential isolate, Talaromyces trachyspermus was confirmed by BLAST and phylogenetic analysis of sequences of rDNA ITS, LSU (D1 D2) and β-tubulin genes. Among all the isolates, T. trachyspermus exhibited comparatively higher activity for hydrolytic enzymes, protease, chitinase, amylase, cellulase and pectinase that are required for antagonistic property. It was observed to be a promising biocontrol agent against plant pathogen, Sclerotinia sclerotiorum. This strain is also characterized with high level of indole acetic acid (IAA), siderophore synthesis, and phosphate solubilization activities that are important for plant growth promotion. This is the first report on endophyte, T. trachyspermus from W. somnifera having potential plant growth promoting traits and biocontrol, which can be further exploited to enhance the medicinal value of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari M, Yadav DR, Kim S, Um YH, Kim HS, Lee HB, Lee YS (2015) Discovery of two new Talaromyces species from crop field soil in Korea. Mycobiology 43(4):402–407

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Benjamin CR (1955) Ascocarps of Aspergillus and Penicillium. Mycologia 47:669–687

    Google Scholar 

  • Berbee ML, Yoshimura A, Sugiyama J, Taylor JW (1995) Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87:210–222

    CAS  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538

    CAS  Google Scholar 

  • Dethoup T, Kumla D, Kijjoa A (2015) Mycocidal activity of crude extracts of marine-derived beneficial fungi against plant pathogenic fungi. Mycocidal activity against plant pathogenic fungi. J Biopest 8(2):107–115

    CAS  Google Scholar 

  • Dutta BK (1981) Studies on some fungi isolated from the rhizosphere to tomato plants and the consequent prospect for the control of Verticillium wilt. Plant Soil 63:209–216

    Google Scholar 

  • Fang D, Shi C (2016) Characterization and flocculability of a novel proteoglycan produced by Talaromyces trachyspermus OU5. J Biosci Bioeng 121(1):52–56

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8(12):e84102. https://doi.org/10.1371/journal.pone.0084102

    Article  CAS  Google Scholar 

  • Fujii T, Hoshino T, Inoue H, Yano S (2013) Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol Lett 351:32–41. https://doi.org/10.1111/1574-6968.12352

    Article  CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DM (1995) Ainsworth and Bisby’s dictionary of the fungi, 8th edn. CAB International, Wallingford

    Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Houbraken J, Yilmaz N, López-Quintero CA, Vasco-Palacios AC, Frisvad JC, Theelen B, Boekhout T, Samson RA (2016) Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests. Mycol Prog 15:1041–1056. https://doi.org/10.1007/s11557-016-1227-3

    Article  Google Scholar 

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):135–136. https://doi.org/10.15406/mojcsr.2016.03.00070

    Article  Google Scholar 

  • Khan FN, Tenguria RK (2015) Biodiversity of endophytic fungi in Withania somnifera leaves of Pachmarhi biosphere reserve, Madhya Pradesh. JIPBS 2(2):222–228

    Google Scholar 

  • Kim H, You YH, Yoon H, Seo Y, Kim YE, Choo YS, Lee IJ, Shin JH, Kim JG (2014) Culturable fungal endophytes isolated from the roots of coastal plants inhabiting korean east coast. Mycobiology 42(2):100–108. https://doi.org/10.5941/MYCO.2014.42.2.100

    Article  Google Scholar 

  • Kimura M (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  Google Scholar 

  • Kornerup A, Wanscher JH (1967) Methuen handbook of colour, 2nd edn. Sankt Jorgen Tryk, Copenhagen

    Google Scholar 

  • Lee L, Rodriguez J, Tsukiyama T (2005) Chromatin remodeling factors isw2 and ino80 regulate checkpoint activity and chromatin structure in s phase. Genetics 199(4):1077–1091

    Google Scholar 

  • Madi L, Katan T, Katan J, Henis Y (1997) Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology 87:1054–1060

    CAS  Google Scholar 

  • Mane RS, Vedamurthy AB (2018) The fungal endophytes: source and future prospectus. J Med Plant Stud 6(2):121–126

    Google Scholar 

  • Menendez AB, Godeas A (1998) Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell wall of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia 142(3):153–160. https://doi.org/10.1023/A:1006910707804

    Article  CAS  Google Scholar 

  • Naraghi L, Heydari A, Ershad D (2006) Sporulation and survival of Talaromyces flavus on different plant material residues for biological control of cotton wilt caused by Verticillium dahliae. Iran J Plant Pathol 42:381–397

    Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M (2012) Biocontrol agent, Talaromyces flavus stimulates the growth of cotton and potato. J Plant Growth Regul 31:471–477

    CAS  Google Scholar 

  • Ogawa H, Yoshimura A, Sugiyama J (1997) Polyphyletic origins of species of the anamorphic genus Geosmithia and the relationships of the cleistothecial genera: evidence from 18S, 5S and 28S rDNA sequence analyses. Mycologia 89:756–771

    CAS  Google Scholar 

  • Pandey MM, Rastogi S, Rawat AK (2008) Indian herbal drug for general healthcare: an overview. Int J Alter Med 6:1–5

    Google Scholar 

  • Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, Soni S, Pandey A, Shanker K, Basu CSV, Banerjee S, Gupta MM, Kalra A (2018) Endophytes of Withania somnifera modulate in plant content and the site of withanolide biosynthesis. Sci Rep 8:5450. https://doi.org/10.1038/s41598-018-23716-5

    Article  CAS  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2018) Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ Sustain 1(1):81–87. https://doi.org/10.1007/s42398-018-0005-3

    Article  Google Scholar 

  • Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. IMI Technical Handbooks No. 1. CAB International, Wallingford

    Google Scholar 

  • Peterson SW (2000) Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 163–178

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology 17:62–370

    Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Hassan SRU (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:8. https://doi.org/10.1186/2193-1801-2-8

    Article  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycological Pap 116:1–56

    Google Scholar 

  • Romão-Dumaresq AS, Dourado MN, Favaro LCDL, Mendes R, Ferreira A, Araújo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11(7):e0158974

    Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 2, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS laboratory manual series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183. https://doi.org/10.3114/sim.2011.70.04

    Article  CAS  Google Scholar 

  • Samson RA, Yilmaz N, Visagie CM, Houbraken J, Frisvad JC (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    Google Scholar 

  • Samson RA, Chen AJ, Sun BD, Houbraken J, Frisvad JC, Yilmaz N, Zhou YG (2016) New Talaromyces species from indoor environments in China. Stud Mycol 84:119–144

    Google Scholar 

  • Sathiyabama M, Parthasarathy R (2018) Withanolide production by fungal endophyte isolated from Withania somnifera. Nat Prod Res 32(13):1573–1577

    CAS  Google Scholar 

  • Sayyed RZ, Naphade BS, Chincholkar SB (2007) Siderophore producing A. faecalis promoted the growth of safed musli and ashwagandha. J Med Arom Pl Sci 29:1–5

    Google Scholar 

  • Schocha CL, Seifert KA, Huhndorf S, Robertd V, Spougea JL, Levesque CA, Chenb W (2012) Fungal barcoding consortium nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109(16):6241–6246

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    CAS  Google Scholar 

  • Shakeri J, Howard A (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Foster Enz Microb Tech 40:961–968

    CAS  Google Scholar 

  • Sierra G (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Ant Van Leeuwenhoek 23(1):15–22

    CAS  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco, p 573

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  Google Scholar 

  • Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X (1996) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol 17(5):417–423

    CAS  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma: a review. Acta Microbiol Immunol Hung 52:137–168

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43(4):777–780

    CAS  Google Scholar 

  • Thirumurugan D, Sankari D, Vijaya KR (2015) Screening of chitinase production and antifungal activity of Streptomyces sp. act7 from east coast region, South India. Int J Pharm Pharm Sci 7(5):38–41

    CAS  Google Scholar 

  • Tjamos EC, Fravel DR (1997) Distribution and establishment of the biocontrol fungus Talaromyces flavus in soil and on roots of solanaceous crops. Crop Prot 16:135–139

    Google Scholar 

  • Tranquillini R, Scaramuzza N, Berni E (2017) Occurrence and ecological distribution of heat resistant moulds spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. Int J Food Microbiol 242(2):116–123

    Google Scholar 

  • Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol 5:371218

    Google Scholar 

  • Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54. https://doi.org/10.3767/003158512X659500

    Article  CAS  Google Scholar 

  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    CAS  Google Scholar 

Download references

Acknowledgments

The first author is financially supported by DBT-Builder Programme Barkatullah University Bhopal (M.P.) The authors are grateful to Dr. S. K. Singh, Coordinator, National Fungal Culture Collection of India (NFCCI) Agharkar Research Institute Pune, for identification of fungi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Prakash.

Ethics declarations

Conflict of interest

The author shows no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Prakash, A. & Shende, K. Talaromyces trachyspermus, an endophyte from Withania somnifera with plant growth promoting attributes. Environmental Sustainability 2, 13–21 (2019). https://doi.org/10.1007/s42398-019-00045-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00045-5

Keywords

Navigation