Skip to main content
Log in

Inoculation of endophlytic diazotrophic bacteria in micropropagated seedlings of sugarcane (Saccharum officinarum sp.)

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

The inoculation of diazotrophic endophytic bacteria in micropropagated sugarcane plants has been utilized in studies on the association between plants and diazotrophic bacteria, allowing us to evaluate the potential of BNF and growth promotion. The objective of this study was to evaluate the effects of inoculation (alone and in a mixture) of different strains of endophytic bacteria from the sugarcane variety RB867515, collected in northeast Brazil, on sugarcane growth at the initial growth stage (45 and 120 days after inoculation—DAI). For this purpose, two experiments were carried out in a greenhouse at the Agronomic Institute of Pernambuco (IPA), located in the city of Goiania, PE, Brazil, in a completely randomized design. The first experiment, with micropropagated seedlings grown in tubes at 45 DAI, was composed of uninoculated plants, plants inoculated in vitro with three individual endophytic bacterial isolates, and plants inoculated in vitro with a mixture of all three bacterial isolates. The second experiment, at 150 DAI, consisted of inoculated plants transplanted to pots with nonsterile soil without nitrogen fertilization and uninoculated plants with nitrogen fertilization equivalent to 80 kg of N ha−1. The variables analyzed were the shoot and root dry weight, tillering and N content accumulated in the plant. At 45 DAI, there was no significant difference between the inoculated plants and the uninoculated control. The inoculation of nitrogen-fixing bacteria native to the northeast region in micropropagated seedlings of sugarcane variety RB867515 grown in pots promoted plant development and presented similar performance to the nitrogen treatment at 150 DAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves BJR, Santos JCF, Urquiaga S, Boddey RM (1994) Métodos de determinação do nitrogênio em solo e planta. In: Hungria M, Araújo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa Agropecuária arroz e feijão, Centro Nacional de Pesquisa da soja – Brasília: EMBRAPA–SPI (EMBRAPA – CNPAF. Documentos, 46). ISSN 0101-9716, pp 449–469

  • Associação Nacional para Difusão de Adubos (ANDA) (2018) Accessed on line 2018. http://www.anda.org.br/index.php?mpg=03.00.00&ver=por. Accessed 20 Jan 2018

  • Boddey RM, Dobereiner J (1982) Association of Azospirillum and other diazotrophs with tropical gramineae. Non-symbiotic nitrogen fixation and organic matter in the tropics. Symposium papers vol 1. 12th Int. Congr Soil Sci, New Delhi, pp 28–47

  • Boddey RM, Boddey LH, Urquiaga S (1990) A técnica de redução de acetileno na medição da fixação biológica de nitrogênio. Embrapa-CNPBS. Documentos, 6 edn. Universidade Rural, Itaguaí/Rio de Janeiro

  • Canuto EL, Salles JF, Oliveira ALM, Perin L, Reis VM, Baldani JI (2003) Resposta de plantas micropropagadas de cana-de-açúcar à inoculação de bactérias diazotróficas endofíticas. Agronomia 37:67–72

    Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37(49–57):132. https://doi.org/10.2307/1310177

    Article  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment os benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005

    Article  CAS  Google Scholar 

  • Compainha Nacional de Abastecimento—CONAB (2018) Acompanhamento safra brasileira de cana, v 5—Safra 2018/2019, n.1. Primeiro levantamento, pp 1–62. https://www.conab.gov.br/info-agro/safras/cana. Acessed 18 Jun 2018

  • Compant S, Clément S, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Da Silva M, Antonio C, de Oliveira P, Xavier G, Rumjanek N, Soares LH, Reis V (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243. https://doi.org/10.1007/s11104-012-1242-3

    Article  CAS  Google Scholar 

  • Döbereiner J, Baldani VLD.B, Baldani JI (1995) Como isolar e ientificar bactérias diazotróficas de plantas não leguminosas. Embrapa-CNPAB–SPI, Itaguaí

  • Donato VMTS, Andrade AG, Souza ES, França JGE (2003) Metabolismo de plantas de cana-de-açúcar cultivadas in vitro sob diferentes concentrações de nitrogênio. Pesq Agropec Bras 38:1373–1379

    Article  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:1–12. https://doi.org/10.1186/s13568-018-0608-1

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22. https://doi.org/10.1104/pp.15.00284

    Article  CAS  Google Scholar 

  • Gírio LAS, Dias FLF, Reis VM, Urquiaga S, Schultz N, Bolonhezi D, Mutton MA (2015) Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesq Agropec Bras 50:33–43. https://doi.org/10.1590/S0100-204X2015000100004

    Article  Google Scholar 

  • Gosal SK, Kalia A, Uppal SK, Kumar R, Walia SS, Singh K, Singh H (2012) Assessing the benefits of Azotobacter bacterization in sugarcane: a field appraisal. Sugar Tech 14:61–67. https://doi.org/10.1007/s12355-011-0131-z

    Article  CAS  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  Google Scholar 

  • Hendre RR, Iyor RS, Kotwalm M, Kluspe SS, Mascarenhas AF (1983) Rapid multiplication of sugar cane by tissue culture. Sugar Cane 1:5–8

    Google Scholar 

  • Houlton BZ, Morford SL (2015) A new synthesis for terrestrial nitrogen inputs. Soil 1:381–397. http://dx.doi.org/10.5194/soil-1-381-2015

    Article  Google Scholar 

  • Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T (2013) Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J Basic Microbiol 53:1004–1015. https://doi.org/10.1002/jobm.201200141

    Article  CAS  Google Scholar 

  • Kuss AV, Kus VV, Lovato T, Flores ML (2007) Fixação de nitrogênio e produção de ácido indol acético in vitro por bactérias diazotróficas endofíticas. Pesquisa Agropecuária Brasileira 42:1459–1465. https://doi.org/10.1590/S0100-204X2007001000013

    Article  Google Scholar 

  • Lima RC, Kozusny-Andreani DI, Junior RA, Fonseca L (2011) Caracterização fenotípica de bactérias diazotróficas endofíticas isoladas de cana-de-açúcar. Rev Fac Nac Agron 64:5803–5813

    Google Scholar 

  • Murashigue T, Skoog F (1962) A revised medium for rapid growth and bioassays with Tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Oliveira RP, Schultz N, Monteiro RC, Pereira W, Araújo AP, Urquiaga S, Reis VM (2016) Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr J Agric Res 11(30):2786–2795. https://doi.org/10.5897/AJAR2016.11141

    Article  Google Scholar 

  • Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116. https://doi.org/10.1007/s11104-017-3244-7

    Article  CAS  Google Scholar 

  • Pereira W, Leite JM, Hipólito GS, Santos CLR, Reis VM (2013) Acúmulo de biomassa em variedades de cana-de-açúcar inoculadas com diferenes estirpes de bactérias diazotróficas. Rev Ci Agro 44:363–370. https://doi.org/10.1590/S1806-66902013000200020

    Article  Google Scholar 

  • Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro—RIDESA (2010) Catálogo nacional de variedades “RB” de cana-de-açúcar. Curitiba, p 136

  • Reis VM (2004) Método de inoculação de bactérias diazotróficas em plantas de cana-de-açúcar micropropagadas. EMBRAPA, Comunicado técnico 65, Seropédica/Rio de Janeiro, Brasil. ISSN 1517-8862

  • Reis VM, Olivares FL, Oliveira ALM, Reis Junior FB, Baldani JI, Döbereiner J (1999) Technical approaches to inoculate micropropagated sugar cane plants with Acetobacter diazotrophicus. Plant Soil 206:205–211

    Article  Google Scholar 

  • Rodrigues Neto J, Malavolta Júnior VA, Victor O (1986) Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12:16

    Google Scholar 

  • Rodriguez H, Gonzalez T, Selman G (2000) Expresion of a mineral phosphate solubilizing gene from Erwinia herbícola in two rhizobacterial strains. J Biotechnol 84:155–161. https://doi.org/10.1016/S0168-1656(00)00347-3

    Article  CAS  Google Scholar 

  • Sambrook J, Maccallum P, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springs Harbour Press, New York

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MDC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  Google Scholar 

  • Sarruge JR (1975) Soluções nutritivas para crescimento de plantas. Summa Phytopathol 1:231–234

    CAS  Google Scholar 

  • Schultz N, Morais RF, Silva JA, Baptista RB, Oliveira RP, Leite JM, Pereira W, Carneiro Júnior JB, Alves BJR, Baldani JI, Boddey RM, Urquiaga S, Reis VM (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesq Agropec bras 47:261–268. https://doi.org/10.1590/S0100-204X2012000200015

    Article  Google Scholar 

  • Sengupta A, Gunri SK (2015) Microbial intervention in agriculture: Na overview. Afr J Microbiol Res 9:1215–1226. https://doi.org/10.5897/AJMR2014.7325

    Article  Google Scholar 

  • Silveira APD, Silva LR, Azevedo IC, Oliveira E, Meletti LMM (2003) Desempenho de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo, em diferentes substratos. Bragantia 62:89–99. https://doi.org/10.1590/S0006-87052003000100012

    Article  Google Scholar 

  • Singh RK, Mishra RPN, Jaiswal HK (2005) Role of rhizobial endophytes as nitrogen fixer in promoting plant growth and productivity of Indian cultivated upland rice (Oryza sativa L.) plants. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Amsterdam, pp 289–291

    Chapter  Google Scholar 

  • Siqueira Neto M, Galdos MV, Feigl BJ, Cerri CEP, Cerri CC (2016) Direct N2O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. GCB Bioenergy 8(2):269–280. https://doi.org/10.1111/gcbb.12251

    Article  Google Scholar 

  • Spatzal T (2015) The center of biological nitrogen fixation: FeMo-Cofactor. Z Anorg Allg Chem 641:10–17

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • United States Department of Agriculture—USDA (2017) Sugar: world markets and trade. Foreign agricultural service. https://apps.fas.usda.gov/psdonline/circulars/sugar.pdf. Acessed 03 July 2018

  • Vargas L, Carvalho TLG, Ferreira PCG, Baldani VLD, Baldani JI, Hemerly AS (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependente on plant and bacterial genotypes. Plant Soil 356:127–137. https://doi.org/10.1007/s11104-012-1274-8

    Article  CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi K (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophic from deep water rice. J Biotechnol 91:127–141. https://doi.org/10.1016/S0168-1656(01)00333-9

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Gene-Trak DJL (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvemen. Springer, Dordrecht, pp 23–50

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant number 310030/2015-3), and MCSB obtained a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Márcia do Vale Barreto Figueiredo or Vera Lúcia de Menezes Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Carmo Silva Barreto, M., do Vale Barreto Figueiredo, M., Silva, M.V. et al. Inoculation of endophlytic diazotrophic bacteria in micropropagated seedlings of sugarcane (Saccharum officinarum sp.). Environmental Sustainability 2, 5–12 (2019). https://doi.org/10.1007/s42398-019-00044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00044-6

Keywords

Navigation