Skip to main content

Advertisement

Log in

Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

In present investigation, six potential candidates of Mesorhizobium ciceri were isolated from five different districts of Eastern Uttar Pradesh and were characterized based on biochemical characteristics as well as 16S rDNA sequences. Isolates were analyzed for their multiple plant growth promoting traits, resistance to various environmental stresses such as temperature, pH and salt and were tested individually for growth and yield of three popular varieties of chickpea viz. Avarodi, Uday and PUSA-372, cultivated in the mid-Gangetic region of India. All the isolates exhibited siderophore production and were able to solubilize the inorganic phosphate and zinc. Among total, 50% isolates were found positive to produce ammonia and HCN whereas, IAA production was exhibited in 33.3% isolates. Most of the isolates were found able to tolerate environmental stresses. The growth and yield of Avarodhi and Uday chickpea varieties were found significantly higher when treated with M. ciceri strain S3N1 while in variety PUSA-372 it was exhibited when treated with M. ciceri strain VAR2.2. Present investigation concluded that a particular M. ciceri strain might not be wholly effective for a wide range of chickpea varieties. These strains may be effective bioinoculant for the growth and yield enhancement of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdelnaby M, Elnesairy NNB, Mohamed SH, Alkhayali YAA (2015) Symbiotic and phenotypic characteristics of rhizobia nodulaing Cowpea (Vigna Unguiculata L. Walp) Grown in Arid Region of Libya (Fezzan). J Environ Sci Eng 4:227–239. https://doi.org/10.17265/2162-5263/2015.05.001

    Article  Google Scholar 

  • Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J Res 39:1133–1147

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2006) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Araujo ASF, Lopes ACA, Gomes RLF, Beserra Junior JEA, Antunes JEL, Lyra MCCP, Figueiredo MDVB (2015) Diversity of native rhizobia-nodulating Phaseolus lunatus in Brazil. Legume Res 38(5):653–657

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in straind chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1993) Microbial production of plant growth regulators. In: Blaine F, Metting JR (eds) Soil microbial ecology. Marcel and Dekker Inc., New York, pp 307–347

    Google Scholar 

  • Asei R, Ewusi-Mensah N, Abaidoo RC (2015) Response of soybean (Glycine max L.) to rhizobia inoculation and molybdenum application in the Northern savannah zones of Ghana. J Plant Sci 3:64–70. https://doi.org/10.11648/j.jps.2015302.14

    Article  Google Scholar 

  • Atieno M, Hermann L, Okalebo R, Lesueur D (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbiol Biotechnol 28:2541–2550

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol and Biochem 19: 451 457

  • Baliah NT, Pandiarajan G, Kumar BM (2016) Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Tropical Ecol 57(3):465–474

    Google Scholar 

  • Bano N, Musarrat J (2003) Characterizationof anew Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    Article  CAS  Google Scholar 

  • Ben-David A, Davidson CE (2014) Estimation method for serial dilution. J Microbio Methods 107:214–221

    Article  Google Scholar 

  • Bertamini M, Zulini L, Muthuchelian K, Nedunchezhian N (2006) Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv.Riesling) plants. Photosynthetica 44:151–154

    Article  CAS  Google Scholar 

  • Bertrand A, Dhont C, Bipfubusa M, Chalifour FP, Drouin P, Beauchamp CJ (2015) Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol 87:108–117

    Article  Google Scholar 

  • Bhagat D, Sharma P, Sirari A, Kumawat KC (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3(4):923–930

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbio Biotech 28:1327–1350

    Article  CAS  Google Scholar 

  • Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fertil Res 42:241–250

    Article  CAS  Google Scholar 

  • Brígido C, Alexandre A, Oliveira S (2012) Transcriptional analysis of major chaperone genes in salt-tolerant and salt-sensitive mesorhizobia. Microbiol Res 167:623–629

    Article  CAS  Google Scholar 

  • Cappuccino JC, Sherman N (1992) In: Microbiology: a laboratory manual, New York, pp 125–179

  • Cecchin I, Terezinha FF (2004) Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci 166:1379–1385

    Article  CAS  Google Scholar 

  • Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arientinum L.) by inoculation of 1-aminocyclopropane-1-caroxylic acid deaminase containing Mesorhizobium strains. African J Microbiol Res 9(2):117–124

    Article  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fert Soils 24:358–364

    Article  Google Scholar 

  • Dong R, Zhang J, Huan H, Bai C, Chen Z, Liu G (2017) High salt tolerance of a bradyrhizobium strain and its promotion of the growth of stylosanthes guianensis. Int J Mol Sci 18:1625–1642

    Article  CAS  Google Scholar 

  • Elizabeth W, O’Hara GW, Howieson J, Glenn AR (2000) Identification of tolerance to soil acidity in inoculant strains of Rhizobium leguminosarum bv Trifolii. Soil Biol Biochem 32(10):193–1403

    Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi, p 198

    Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195

    Article  CAS  Google Scholar 

  • Hogg DE (1976) Effect of the soil aeration on the growth of white clover in a glass house pot experiment. New Zealand J of Exp Ag 4(4):467–468

    Article  Google Scholar 

  • Huda S, Siddique NA, Khatun N, Rahman MH, Morshed M (2003) Regeneration of shoot from cotyledon derived callus of chickpea (Cicer arietinum L.). Pak J Biol Sci 6:1310–1313

    Article  Google Scholar 

  • Jida M, Assefa F (2012) Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea (Cicer arietinum L.) growing areas of Ethiopia. Afr J Biotech 11(29):7483–7493

    CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutri 108:11–26

    Article  CAS  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  Google Scholar 

  • Kaur N, Sharma P (2013) Screening and characterization of native Pseudomonas sp. as plant growth promoting rhizobacteria in chickpea (Cicer arietinum L.) rhizospere. Afr J Microbiol Res 7:1465–1474

    Article  CAS  Google Scholar 

  • Kaur N, Sharma P, Sharma S (2015) Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and biofertilizer in chickpea (Cicer arietinum L.). Legume Res 38:367–374

    Article  Google Scholar 

  • Khande R, Sushil KS, Ramesh A, Mahaveer PS (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138

    Article  Google Scholar 

  • Koli DK, Swarnalakshmi K (2017) Isolation and characterization of nodule associated bacteria from chickpea and their potential for plant growth promotion. Int J Curr Microbiol App Sci 6(5):1992–2004

    Article  CAS  Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141

    Article  Google Scholar 

  • Küçük C, Kıvanç M (2008) Preliminary characterization of Rhizobium strains isolated from chickpea nodules. Afr J Biotech 7:772–775

    Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Laranjo M, Oliveira S (2011) Tolerance of Mesorhizobium type strains to different environmental stresses. Antoni van Leeuwenhoek 99:651–662

    Article  CAS  Google Scholar 

  • Maâtallah J, Berraho EB, Sanjuan J, Lluch C (2002) Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccan soils. Agronomie 22:321–329

    Article  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Bio Plants 17(1):25–32

    Article  CAS  Google Scholar 

  • Mathu S, Herrmann L, Pypers P, Matiru R, Lesueur D (2017) Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp) and green gram (Vigna radiate L. wilczek.) yields in Kenya. Soil Sci Plant Nutr 58:750–763

    Article  Google Scholar 

  • Messaoud BB, Aboumerieme I, Nassiri LE, Fahime E, Ibijbijen J (2014) Phenotypic and genotypic characteristics of rhizobia Straind from meknes-tafilalet soils and study of their ability to nodulate Bituminaria bituminosa. Br Microbiol Res J 4(4):405–417

    Article  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bishr JK, Kundu S, Gupta HS (2009) Co-inoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Article  Google Scholar 

  • Mishra I, Sapre GS, Tiwar S (2017) Zinc solubilizing bacteria from the hizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190

    Article  Google Scholar 

  • Moussaid S, Domínguez-Ferreras A, Muñoz S, Aurag J, Sanjuán J (2017) Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis 67:103–111

    Article  CAS  Google Scholar 

  • Muneer S, Jeong BR (2015) Proteomic analysis provides new insights in phosphorus homeostasis subjected to pi (inorganic phosphate) starvation in tomato plants (Solanum lycopersicum L.). PLoS ONE 10:1–18

    Google Scholar 

  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stweart A et al (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic adic derivates, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102. https://doi.org/10.3389/fpls.2017.00102

    Article  Google Scholar 

  • Ozer S, Karakoy T, Toklu F, Baloch FS, Kilian B, Ozkan H (2010) Nutritional and physico-chemical variation in Turkish Kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 175:237–249

    Article  CAS  Google Scholar 

  • Pandey RP, Srivastava AK, Srivastava AK, Ramteke PW (2018) Antagonistic activity of Mesorhizobium ciceri against phytopathogenic fungi Fusarium oxysporum f. sp. ciceris. Trends in Biosci 11(5):637–639

    Google Scholar 

  • Pérez-Fernández M, Alexander V (2017) Enhanced plant performance in Cicer arietinum L. due to the addition of a combination of plant growth-promoting bacteria. Agriculture 7:40

    Article  CAS  Google Scholar 

  • Qu LQ, Huang YY, Zhu CM, Zeng HQ, Shen CJ, Liu C, Zhao Y, Pi EX (2016) Rhizobia-inoculation enhances the soybean’s tolerance to salt stress. Plant Soil 400:209–222

    Article  CAS  Google Scholar 

  • Rai R, Dash PK, Mohapatra T, Singh A (2012) Phenotypic and molecular characterization of indigenious rhizobia nodulating chickpea in India. Indian J Exp Bio 50(5):340–350

    CAS  Google Scholar 

  • Rupela OP (1987) Nodulation and nitrogen fixation in chickpea. CAB International, Wallingford, pp 196–206

    Google Scholar 

  • Sammauria R, Kumawat S (2018) Legume plant growth-promoting rhizobacteria (PGPRs): role in soil sustainability. in book: legumes for soil health and sustainable management. pp 409–443. https://doi.org/10.1007/978-981-13-0253-4_13

  • Sankar PM, Vanitha S, Kamalakannan A, Raju PA, Jeyakumar P (2018) Prevalence of Fusarium oxysporum f. sp. ciceris causing wilt in chickpea and its pathogenic, cultural and morphological characterization. Int J Curr Microbiol Appl Sci 7(2):1301–1313

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013a) Phosphate solubilising microbes:sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  CAS  Google Scholar 

  • Sharma P, Khanna V, Kaur N, Dhillon G, Singh G, Sharma S, Kaur H, Saxena AK (2013b) Effect of dual inoculation of Pseudomonas argentinensis LPGPR1 and Mesorhizobium on growth of chickpea (Cicer arietinum L.). J Res Punjab Agril Univ 50:1–4

    Google Scholar 

  • Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microbial Ecol 66:375–384

    Article  CAS  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2015) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 55:1–12

    Article  CAS  Google Scholar 

  • Singh P, Shahi B, Singh KM (2017a) Trends of pulses production, consumption and import in India: current scenario and strategies. 04:5581589 (http://mrpa.ub.uni-muenchen.de/81589/)

  • Singh Z, Singh G, Aggarwal N (2017b) Effect of Mesorhizobium, plant growth promoting rhizobacteria and phosphorus on plant biometery and growth indices of desi chickpea (Cicer arietinum L.). J Appl Natural Sci 9(3):1422–1428

    Article  CAS  Google Scholar 

  • Talbi C, Argandoña M, Salvador M, Alché JD, Vargas C, Bedmar EJ, Delgado MJ (2013) Burkholderia phymatum improves salt tolerance of symbiotic nitrogen fixation in Phaseolus vulgaris. Plant Soil 367:673–685

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Tena W, Wolde-Meskel E, Walley F (2016) Response of chickpea (Cicer arietinum L.) to inoculation with native and exotic Mesorhizobium strains in Southern Ethiopia. Afr J Biotechnol 15(35):1920–1929

    Article  CAS  Google Scholar 

  • Ulzen J, Abaidoo RC, Mensah NA, Masso C, AbdelGadir AH (2016) Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Front Plant Sci 7:1770

    Article  Google Scholar 

  • van der Maesen LJG (1984) Taxonomy, distribution and evolution of the chickpea and its wild relatives, pp 95–104. In: Genetic Resources and their ExploitationChickpea, Faba beans and Lentils (Eds. J.R. Witcombe and W. Erskine), Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands

  • Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Intern Biol Prog. Blackwell Scientific, Oxford

    Google Scholar 

  • Vishnu-Mittre B (1974) The beginnings of agriculture: palaeobotanical evidence in India. In: Hutchinson J (ed) Evolutionary studies in world crops. Cambridge University Press, London, p 3-3Q

    Google Scholar 

  • Vylkova S (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. Plos Pathol 13(2):e1006149

    Article  CAS  Google Scholar 

  • Wang YF, Zhang ZQ, Zhang P, Cao YM, Hu TM, Yang PZ (2016) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402:247–261

    Article  CAS  Google Scholar 

  • Wolde-meskel E, van Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakweya K, Kanampin F, Giller KE (2018) Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152

    Article  Google Scholar 

  • Yadav K (2009) Cultivation of chickpea (Cicer arientinum L.). Agropedia, ICAR-NAIP (http://agropedia.iitk.ac.in/content/cultivation-chick-pea-cicer-arientinum-l)

  • Yadav P, Chandra R, Pareek N, Raverkar KP (2018) Screening of multi-trait mesorhizobium isolates for plant growth promotion and nitrogen fixation in chickpea (Cicer arietinum L.). Int J Curr Microbiol App Sci 7(8):2592–2599. https://doi.org/10.20546/ijcmas.2018.708.266

    Article  CAS  Google Scholar 

  • Yan N, Zhang YL, Xue HM, Zhang XH, Wang ZD, Shi LY, Guo DP (2015) Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorous concentrations under hydroponic condition. Photosynthetica 53:630–635

    Article  CAS  Google Scholar 

  • Zapata F, Zaharah AR (2002) Phosphate availability from phosphate rock and sewage sludge as influenced by addition of water soluble phosphate fertilizers. Nutri Cycl Agroeco 63(1):43–48

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency inducible mechanisms. Plant J 58:568–577

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Wasudeo Ramteke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R.P., Srivastava, A.K., Gupta, V.K. et al. Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri. Environmental Sustainability 1, 425–435 (2018). https://doi.org/10.1007/s42398-018-00039-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-018-00039-9

Keywords

Navigation