Skip to main content
Log in

Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Iron is one of the essential elements for most organisms and for proper plant growth. Present study revealed that isolates Pantoea dispersa MPJ9 and Pseudomonas putida MPJ6 were potent iron chelating rhizobacteria which possess siderophore activity 89.9% and 85.3% respectively, under iron limited environment. Threshold level of iron for siderophore production was observed at 15 µM iron concentration. Isolates have potential of producing plant growth promoting attributes. Catecholate type siderophore were detected by HPLC showed peak at retention time of 2.9 and 4.6 min. Pot study results revealed at harvest time, bio-inoculum treated plants significantly increased vegetative parameters, iron content (100.3 ppm), protein (0.52 g/g), carbohydrates (0.67 g/g) as compared to un-inoculated plants, indicating that use of siderophore producing isolates could result in enhancement of iron content of the mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1973) Vigour determination of soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  • Ali B, Ali A, Tahir M, Ali S (2014) Growth, Seed yield and quality of mungbean as influenced by foliar application of iron sulfate. Pak J Life Soc Sci 12(1):20–25

    Google Scholar 

  • Arnow LE (1937) Colorimetric estimation of the components of 3, 4-hydroxyphenylalanine–tyrosine mixtures. Annu Rev Biochem 50:715–731

    Google Scholar 

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 45(6):1802–1807

    CAS  Google Scholar 

  • Berner I, Greiner M, Metzger J, Jung G, Winkelmann G (1991) Identification of enterobactin and linear dihydroxybenzoylserine compounds by HPLC and ion spray mass spectroscopy (LC/MS and MS/MS). Biol Methods 4:113–118

    Article  CAS  Google Scholar 

  • Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent Pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18(9):1578–1583

    Google Scholar 

  • Bholay AD, Jadhav PU, Borkhataria BV, Dhalkari MV (2012) Fluorescent Pseudomonas as plant growth promoting rhizobacteria and their siderophore genesis. IOSR J Pharm Biol Sci 3(1):27–32

    Google Scholar 

  • Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21(5):613–618

    Article  CAS  Google Scholar 

  • Clark BL (2004) Characterization of a catechol-type siderophore and the detection of a possible outer membrane receptor protein from rhizobium leguminosarum strain. IARI 312:1–91

    Google Scholar 

  • Csaky TZ (1948) On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2:450–454

    Article  CAS  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas sp. N Z J Sci 5:393–416

    Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega J Sci Res 1190:62–72

    Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl Environ Microbiol 67(4):1710–1717

    Article  CAS  Google Scholar 

  • Gupta PK (2006) Wet diacid digestion by nitric acid and perchloric acid. In: Soil, plant, water and fertilizer analysis, pp 265–266

  • Jha C, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev 5(2):108–119

    Google Scholar 

  • Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141–147

    Article  CAS  Google Scholar 

  • Krieg NR, Holt JG (1984) Gram negative aerobic rods and cocci, Sec 4. In: Murray RGE (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, New York, pp 140–409

    Google Scholar 

  • Kumar P, Thakur S, Dhingra GK, Singh A, Pal M, Harshvardhan K, Dubey RC, Maheshwari DK (2018) Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol 15:264–269

    Article  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63(1):99–105

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Meliani A et al (2017) Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Res Rev J Bot Sci 6(2):16–24

    CAS  Google Scholar 

  • Modi B, Brinda M, Modi V (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 153(1):38–42

    Article  Google Scholar 

  • Neilands JB (1984) Methodology of siderophores. Siderophores from microorganisms and plants. Struct Bond 58:1–24

    Article  CAS  Google Scholar 

  • Panwar M, Tewari R, Gulati A, Nayyar H (2016) Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant 38(12):278

    Article  CAS  Google Scholar 

  • Pataczek L, Zahir A, Ahmad M, Rani S, Nair R, Schafleitner R, Cadisch G, Hilger T (2018) Beans with benefits—the role of Mungbean (Vigna radiata) in a changing environment. Am J Plant Sci 9:1577–1600

    Article  CAS  Google Scholar 

  • Patel PJ, Trivedi GR, Shah RK, Saraf M (2018a) Selenorhizobacteria: as biofortification tool for sustainable agriculture. Biocatal Agric Biotechnol 14:198–203

    Article  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2018b) Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ Sustain 1(1):81–87

    Article  Google Scholar 

  • Radzki W, Gutierrez Manero FJ, Algar E, Lucas Garcia JA, Garcia Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Leeuwenhoek 104(3):321–330

    Article  CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Roy P, Guha D, Banerjee R, Singh M (2016) A comparative study of three rhizospheric bacteria belonging to different genera, co-infecting a leguminous plant. J Investig Genom 3(3):63–73

    Google Scholar 

  • Sarwer M, Kremer RJ (1995) Enhanced suppression of plant growth through production of l-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172(2):261–269

    Article  Google Scholar 

  • Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160(1):47–56

    Article  CAS  Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and p-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40(4):1735–1741

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    Article  CAS  Google Scholar 

  • Singh S, Gupta G, Khare E, Behal KK, Arora NK (2014) Phosphate solubilizing rhizobia promote the growth of chickpea under buffering conditions. Int J Pure Appl Biosci 2(5):97–106

    Google Scholar 

  • Trivedi G, Shah R, Patel P, Saraf M (2018) Role of endophytes in agricultural crops under abiotic stress: current and future prospects. J Adv Microbiol 3(4):174–188

    Google Scholar 

  • Venkatkumar et al (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophore. Resour Effic Technol 3(4):434–439

    Article  Google Scholar 

  • Weger LA, Arendonk JJ, Recourt K, Hofstad GA, Weisbeek PJ, Lugtenberg B (1988) Siderophore mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J Bacteriol 170(10):4693–4698

    Article  Google Scholar 

  • Yemm EW (1954) The estimation of carbohydrates in plant extracts by Anthrone. Biochem J 57(3):508–514

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Microbiology and Biotechnology, Gujarat University for helpful to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Trivedi, G. & Saraf, M. Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environmental Sustainability 1, 357–365 (2018). https://doi.org/10.1007/s42398-018-00031-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-018-00031-3

Keywords

Navigation