Skip to main content
Log in

Initial Stage of the Finite-Amplitude Cauchy–Poisson Problem

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

The nonlinear Cauchy–Poisson problem for an incompressible inviscid fluid to start flowing under gravity is investigated analytically. The general nonlinear initial/boundary-value problem is formulated, including both an initial surface deflection and an initial velocity generated by a pressure impulse on the surface. Two subproblems are: (1) a finite-amplitude surface deflection released from rest; (2) the fluid is forced into motion by a pressure impulse on the initially horizontal surface. Solutions for these two subproblems are given to the leading order. One exact solution is given for the fully nonlinear initial-value problem, where a surface pressure impulse is applied on a surface with finite initial deflection. The concept of the highest non-breaking wave is illustrated by dipole acceleration fields at a state of gravitational release from rest. This is done for two phenomena: run-up of a non-breaking solitary wave on a sloping beach, and free nonlinear sloshing in an open container.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for water gravity waves. Invent. Math. 198, 71–163 (2012)

    Article  Google Scholar 

  2. Cauchy, A.L.: Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie. Mem. Prés. divers Savants Acad. R. Sci. Inst. 1, 3–123 (1827)

    Google Scholar 

  3. Cooker, M.J.: Liquid impact, kinetic energy loss and compressibility: Lagrangian, Eulerian and acoustic viewpoints. J. Eng. Math. 44, 259–276 (2002)

    Article  MathSciNet  Google Scholar 

  4. Dean, R.G.: Stream function representation of nonlinear ocean waves. J. Geophys. Res. 70, 4561–4572 (1965)

    Article  Google Scholar 

  5. Debnath, L.: The linear and nonlinear Cauchy–Poisson wave problems for an inviscid or viscous liquid. In: Rassias, T.M. (ed.) Topics in Mathematical Analysis: A Volume Dedicated to the Memory of A.L. Cauchy, pp. 123–155. World Scientific Publishing Co., Singapore (1989)

    Chapter  Google Scholar 

  6. Faltinsen, O.M., Timokha, A.N.: Sloshing. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  9. Longuet-Higgins, M.S., Cokelet, E.D.: The deformation of steep surface waves on water—I. A numerical method of computation. Proc. Roy. Soc. A 350, 1–26 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Longuet-Higgins, M.S., Dommermuth, D.G.: On the breaking of standing waves by falling jets. Phys. Fluids 13, 1652–1659 (2001)

    Article  MathSciNet  Google Scholar 

  11. Miles, J.W.: The Cauchy–Poisson problem for a viscous liquid. J. Fluid Mech. 34, 359–370 (1968)

    Article  Google Scholar 

  12. Pedersen, G., Gjevik, B.: Run-up of solitary waves. J. Fluid Mech. 135, 283–299 (1983)

    Article  Google Scholar 

  13. Penney, W.G., Thornhill, C.K.: The dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane. Philos. Trans. R. Soc. Lond. A 244, 285–311 (1952)

    Article  Google Scholar 

  14. Poisson, S.D.: Mémoire sur la théorie des ondes. Mem. Prés. divers Savants Acad. R. Sci. Inst. 2, 70–186 (1818)

    Google Scholar 

  15. Shinbrot, M.: The initial value problem for surface waves under gravity, I: the simplest case. Indiana Univ. Math. J. 25, 281–300 (1976)

    Article  MathSciNet  Google Scholar 

  16. Tyvand, P.A., Miloh, T.: Free-surface flow due to impulsive motion of a submerged circular cylinder. J. Fluid Mech. 286, 67–101 (1995)

    Article  MathSciNet  Google Scholar 

  17. Tyvand, P.A., Solbakken, K.M., Hjelmervik, K.B.: Incompressible impulsive wall impact of liquid bodies. Eur. J. Mech. B/Fluids 47, 202–210 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wehausen, J.V., Laitone, E.V.: Surface waves. In: Encyclopedia of Physics. Vol. IX, Fluid Dynamics III, pp. 446–778 (1960), Springer Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peder A. Tyvand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Family of Harmonic Functions

Appendix: A Family of Harmonic Functions

We show a recursive schemes for calculating higher orders of the harmonic functions \(f_n(x,z)\) defined by their values at the boundary of the half-plane \(z<0\)

$$\begin{aligned} f_n(x,0) = \frac{1}{(1+x^2)^n}, \end{aligned}$$

where n is a positive integer. This family of multipole-type functions can be calculated recursively. First we introduce a source potential \(\chi \) in the apex point (0, 1), which is a fictitious point located outside the fluid domain,

$$\begin{aligned} \chi = \frac{1}{2} \log (x^2 + (z-1)^2) \end{aligned}$$

and its gradient gives the first-order functions

$$\begin{aligned} f_1(x,z) = - \frac{\partial \chi }{\partial z} = \frac{1-z}{x^2 + (z-1)^2}, \end{aligned}$$

Each new order function is a linear combination of the z derivative of the previous function plus a linear combination of the lower order function.

$$\begin{aligned} 2 f_2= & {} f_1 + \frac{\partial f_1}{\partial z}, \\ 4 f_3= & {} \frac{1}{2} f_1 + 2 f_2 + \frac{\partial f_2}{\partial z}, \\ 6 f_4= & {} \frac{3}{8} f_1 + \frac{3}{4} f_2 + 3 f_3 +\frac{\partial f_3}{\partial z}, \\ 8 f_5= & {} \frac{5}{16} f_1 + \frac{1}{2} f_2 + f_3 + 4 f_4 + \frac{\partial f_4}{\partial z}, \\ 10 f_6= & {} \frac{35}{128} f_1 + \frac{25}{64} f_2 + \frac{5}{8} f_3 + \frac{5}{4} f_4 + 5 f_5 + \frac{\partial f_5}{\partial z}, \\ 12 f_7= & {} \frac{63}{256} f_1 + \frac{21}{64} f_2 + \frac{15}{32} f_3 + \frac{3}{4} f_4 + \frac{3}{2} f_5 + 6 f_6 +\frac{\partial f_6}{\partial z}, \\ 14 f_8= & {} \frac{231}{1024} f_1 + \frac{147}{512} f_2 + \frac{49}{128} f_3 + \frac{35}{64} f_4 + \frac{7}{8} f_5 + \frac{7}{4} f_6 + 7 f_7 + \frac{\partial f_7}{\partial z}, \\ 16 f_9= & {} \frac{429}{2048} f_1 + \frac{33}{128} f_2 + \frac{21}{64} f_3 + \frac{7}{16} f_4 + \frac{5}{8} f_5 + f_6 + 2 f_7 + 8 f_8 + \frac{\partial f_8}{\partial z}, \\ 18 f_{10}= & {} \frac{6435}{32768} f_1 + \frac{3861}{16384} f_2 + \frac{297}{1024} f_3 + \frac{189}{512} f_4 + \frac{63}{128} f_5 + \frac{45}{64} f_6 \\&+ \frac{9}{8} f_7 + \frac{9}{4} f_8 + 9 f_9 + \frac{\partial f_9}{\partial z}, \\ 20 f_{11}= & {} \frac{12155}{65536} f_1 + \frac{3575}{16384} f_2 + \frac{2145}{8192} f_3 + \frac{165}{512} f_4 + \frac{105}{256} f_5 + \frac{35}{64} f_6 + \frac{25}{32} f_7 \\&+ \frac{5}{4} f_8 + \frac{5}{2} f_9 + 10 f_{10}+ \frac{\partial f_{10}}{\partial z}, \end{aligned}$$

Note that these recursive formulas are valid in the entire half-plane \(z \le 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyvand, P.A. Initial Stage of the Finite-Amplitude Cauchy–Poisson Problem. Water Waves 2, 145–168 (2020). https://doi.org/10.1007/s42286-019-00020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-019-00020-x

Keywords

Navigation