Skip to main content
Log in

Linear Modes for Channels of Constant Cross-Section and Approximate Dirichlet–Neumann Operators

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

We study normal modes for the linear water wave problem in infinite straight channels of bounded constant cross-section. Our goal is to compare semi-analytic normal mode solutions known in the literature for special triangular cross-sections, namely isosceles triangles of equal angle of \(45^{\circ }\) and \(60^{\circ }\), see Lamb (Hydrodynamics. Cambridge University Press, Cambridge, 1932) , Macdonald (Proc Lond Math Soc 1:101–113, 1893), Greenhill (Am J Math 97–112, 1887), Packham (Q J Mech Appl Math 33:179–187, 1980), and Groves (Q J Mech Appl Math 47:367–404, 1994), to numerical solutions obtained using approximations of the non-local Dirichlet–Neumann operator for linear waves, specifically an ad-hoc approximation proposed in Vargas-Magaña and Panayotaros (Wave Motion 65:156–174, 2016), and a first-order truncation of the systematic depth expansion by Craig et al. (Proc R Soc Lond A: Math, Phys Eng Sci 46:839–873, 2005). We consider cases of transverse (i.e. 2-D) modes and longitudinal modes, i.e. 3-D modes with sinusoidal dependence in the longitudinal direction. The triangular geometries considered have slopping beach boundaries that should in principle limit the applicability of the approximate Dirichlet–Neumann operators. We nevertheless see that the approximate operators give remarkably close results for transverse even modes, while for odd transverse modes we have some discrepancies near the boundary. In the case of longitudinal modes, where the theory only yields even modes, the different approximate operators show more discrepancies for the first two longitudinal modes and better agreement for higher modes. The ad-hoc approximation is generally closer to exact modes away from the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aceves-Sánchez, P., Minzoni, A.A., Panayotaros, P.: Numerical study of a nonlocal model for water-waves with variable depth. Wave Motion 50(1), 80–93 (2013)

    Article  MathSciNet  Google Scholar 

  2. Andrade, D., Nachbin, A.: A three-dimensional Dirichlet-to-Neumann operator for water waves over topography. J. Fluid Mech. 845, 321–345 (2018)

    Article  MathSciNet  Google Scholar 

  3. Athanassoulis A. G., Papoutsellis Ch. E.: Exact semi-separation of variables in wave guides with nonplanar boundaries Proc. R. Soc. London A, 473, 20170017

  4. Carter, J.D.: Bidirectional Whitham equations as models of waves in shallow water. Wave Motion 82, 51–62 (2018)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181(2), 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  6. Craig, W., Groves, M.D.: Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19(4), 367–389 (1994)

    Article  MathSciNet  Google Scholar 

  7. Craig W., Guyenne P., Nicholls D.P., Sulem C.: Hamiltonian long-wave expansions for water waves over a rough bottom. In: Proc. Royal Soc. London A: Math., Phys. Eng. Sci.,46, 839-873 (2005)

    Article  MathSciNet  Google Scholar 

  8. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)

    Article  MathSciNet  Google Scholar 

  9. Craig, W., Gazeau, M., Lacave, C., Sulem, C.: Bloch theory and spectral gaps for linearized water waves. SIAM J. Math. Anal. 50(5), 5477–5501 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ehrnström, M., Kalisch, H.: Traveling waves for the Whitham equation. Differ. Int. Equ. 22(11/12), 1193–1210 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Ehrnström, M., Groves, M.D., Wahlénn, E.: On the existence and stability of solitary-wave solutions to a class of evolution equations of whitham type. Nonlinearity 25(10), 2903 (2012)

    Article  MathSciNet  Google Scholar 

  12. Evans, D.V., Linton, C.M.: Sloshing frequencies. Quart. J. Mech. Appl. Math. 46(1), 71–87 (1993)

    Article  MathSciNet  Google Scholar 

  13. Greenhill, A.G.: Wave motion in hydrodynamics (continued). Am. J. Math. 97–112, (1887)

  14. Groves, M.D.: Hamiltonian long-wave theory for water waves in a channel. Quart. J. Mech. Appl. Math. 47, 367–404 (1994)

    Article  MathSciNet  Google Scholar 

  15. Gouin M., Ducrozet G., Ferrant P.: Development and validation of a highly nonlinear model for wave propagation over a variable bathymetry. In: ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, pages V007T06A077-V007T06A077. American Society of Mechanical Engineers (2015)

  16. Guyenne, P., Nicholls, D.P.: Numerical simulations of solitary waves on plane slopes. Math. Comput. Simul. 69(3), 269–281 (2005)

    Article  MathSciNet  Google Scholar 

  17. Guyenne, P., Nicholls, D.P.: A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM J. Sci. Comput. 30(1), 81–101 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hur, V.M., Tao, L.: Wave breaking in shallow water model. SIAM J. Math. Anal. 50, 354–380 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hur, V.M.: Wave breaking in the Whitham equation. Adv. Math. 317, 410–437 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kuznetsov, N., Maz’ya, V., Vainberg, B.: Linear water waves: a mathematical approach. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  21. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  22. Lannes D.: The water wave problem. Mathematical Surveys and Monographs, AMS, 188 (2013)

  23. Macdonald, H.M.: Waves in canals. Proc. Lond. Math. Soc. 1(1), 101–113 (1893)

    Article  MathSciNet  Google Scholar 

  24. Miles, J.W.: On Hamilton’s principle for surface waves. J. Fluid Mech. 83(01), 153–158 (1977)

    Article  MathSciNet  Google Scholar 

  25. Moldabayev, D., Kalisch, H., Dutykh, D.: The Whitham Equation as a model for surface water waves. Physica D: Nonlinear Phenomena 309, 99–107 (2015)

    Article  MathSciNet  Google Scholar 

  26. Moler, C.B.: Numerical Computing with MATLAB: Revised Reprint. Siam (2008)

  27. Naumkin P.I., Shishmarev J.A.: Nonlinear nonlocal equations in the theory of waves. A.M.S. (1994)

  28. Packham, B.A.: Small-amplitude waves in a straight channel of uniform triangular cross-section. Quart. J. Mech. Appl. Math. 33(2), 179–187 (1980)

    Article  Google Scholar 

  29. Papoutsellis, C.H.E., Charalampopoulos, A.G., Athanassoulis, A.G.: Implementation of a fully nonlinear Hamiltonian coupled mode theory, and application to solitary wave problem over bathymetry. Eur. J. Mech. B Fluids 72, 199–224 (2018)

    Article  MathSciNet  Google Scholar 

  30. Porter, D., Staziker, D.J.: Extensions of the mild slope equation. J. Fluid Mech. 300, 367–382 (1995)

    Article  MathSciNet  Google Scholar 

  31. Radder, A.C.: An explicit Hamiltonian formulation of surface waves in water of finite depth. J. Fluid Mech. 237, 435–455 (1992)

    Article  MathSciNet  Google Scholar 

  32. Vargas-Magaña, R.M., Panayotaros, P.: A Whitham–Boussinesq long-wave model for variable topography. Wave Motion 65, 156–174 (2016)

    Article  MathSciNet  Google Scholar 

  33. Whitham, G.B.: Linear and nonlinear waves. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  34. Wilkening, J., Vasan, V.: Comparison of five methods to compute the Dirichlet–Neumann operator for the water wave problem. Contemp. Math. 635, 175–210 (2015)

    Article  Google Scholar 

  35. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank especially Professor Noel Smyth for many helpful comments. R. M. Vargas-Magaña was supported by Conacyt Ph.D. scholarship 213696. P. Panayotaros and R. M Vargas-Magaña also acknowledge partial support from grants SEP-Conacyt 177246 and PAPIIT IN103916. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while R. M. Vargas-Magaña was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2018 semester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Vargas-Magaña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. A. Minzoni: Deceased.

Appendix A

Appendix A

We present some computations related to symmetrization, parity, and the operator \(D \tanh (h(\cdot ) D)\).

The notion of adjoint \({\mathscr {A}}^*\) applies to operators \({\mathscr {A}}:D({\mathscr {A}}) \subset L^2 \rightarrow L^2 \), with \(D({\mathscr {A}})\) dense in \(L^2 = L^2(\mathbb {R};\mathbb {R})\). Operators that map real-valued functions to real-valued (resp. imaginary-valued) functions will be denoted as real (resp. imaginary) operators. Imaginary operators map \(D({\mathscr {A}}) \subset L^2\) to \( i L^2 \). The adjoint and symmetrization of a real operator is real. We extend the definition of the adjoint to imaginary operators by linearity: if \({\mathscr {A}}\) is imaginary, then \({\mathscr {B}} = i {\mathscr {A}}\) is real and \({\mathscr {A}} = -i {\mathscr {B}}\) and we let \({\mathscr {A}}^* = -i {\mathscr {B}}^*\). We note that D and \(\tanh (h(x) D) f\) are imaginary, and, therefore, \( D\tanh (h(x) D) f\) is real. Similarly, we check that operators \({\mathscr {A}}_1\), \({\mathscr {A}}_2\), \({\mathscr {A}}_{1,\kappa }(\beta )\), \({\mathscr {A}}_{G_{0,\kappa }}(\beta )\) are also real.

Also, for \(\beta \), h even we check that \({\mathscr {A}}_1\), \({\mathscr {A}}_2\), \(D\tanh (h(x) D)\), \({\mathscr {A}}_{1,\kappa }(\beta )\), and \({\mathscr {A}}_{G_{0,\kappa }}(\beta )\) preserve parity, i.e. map even (resp. odd) real-valued functions to even (resp. odd) real-valued functions. This follows by examining the various operators appearing in the, respective. definitions and their compositions.

For instance, the operator D maps even (resp. odd) real-valued functions to odd (resp. even) imaginary-valued functions. Also, by the definition of \(\tanh (h(x)D)\) on the line,

$$\begin{aligned} g_1(x)= & {} \tanh (h(x)D) \cos k x = \frac{1}{2} [\tanh (h(x)k) e^{i k x} + \tanh (h(x) (- k) e^{- ik x}] \\= & {} i \tanh (h(x)k) \sin k x, \\ g_2(x)= & {} \tanh (h(x)D) \sin k x = \frac{1}{2 i} [\tanh (h(x) k ) e^{i k x} - \tanh (h(x) (- k)) e^{-i k x}] \\= & {} - i \tanh (h(x) k) \cos k x. \end{aligned}$$

Then h even implies \(g_1(-x) = - g_1(x)\), and \(g_2(-x) = g_2(x)\), for all x. Therefore, \(\tanh (h(x)D) \) maps even (resp. odd) real-valued functions to odd (resp. even) imaginary-valued functions, and \(D \tanh (h(x)D)\) is real and preserves parity Similar calculations apply to \(b-\)periodic functions, e.g. with k integer if \(b = 2 \pi \). Operators \( {\mathscr {A}}_{1,\kappa }(\beta ) \) of (35) and \( {\mathscr {A}}_{G_{0,\kappa }}(\beta ) \) of (36) are compositions of real operators that preserve parity.

We use the above observations to discretize and symmetrize the operator \(D \tanh (h(\cdot ) D)\). We assume h\(2\pi -\)periodic, and we apply these operators to real \(2\pi -\)periodic functions. Let \(\mathcal{T}\) be either D or \(\tanh (h(\cdot ) D)\). We consider the decomposition of real \(2\pi -\)periodic \(L^2\) functions f of vanishing average into even and odd components \(f_E\), \(f_O\), respectively. Truncations to K Fourier modes of \(\mathcal{T}\) are obtained applying \(\mathcal{T}\) to finite cosine and sine series

$$\begin{aligned} f_E^K = \frac{1}{\pi } \sum _{k = 1}^K x_k \cos k x, \quad f_O^K = \frac{1}{\pi } \sum _{k = 1}^K y_k \sin k x, \end{aligned}$$
(59)

respectively. Since D and \(\tanh (h(\cdot ) D)\) map real even functions to imaginary odd functions we have

$$\begin{aligned} \mathcal{T} f_E^K = \frac{i}{\pi } \sum _{\lambda =1}^K x_{\lambda } (\mathcal{T} \cos \lambda x) = \frac{i}{\pi } \sum _{k=1}^K {{\tilde{y}}}_k \sin k x; \end{aligned}$$
(60)

therefore,

$$\begin{aligned} {{\tilde{y}}}_k = -\frac{i}{\pi } \sum _{\lambda =1}^K \left( \int _{0}^{2\pi } \sin k x (\mathcal{T} \cos \lambda x) {\text{ d }} \right) x_{\lambda }. \end{aligned}$$
(61)

Also, D and \(\tanh (h(\cdot ) D)\) map real odd functions to imaginary even functions and we similarly obtain

$$\begin{aligned} \mathcal{T} f_O^K = \frac{i}{\pi } \sum _{\lambda =1}^K y_{\lambda } (\mathcal{T} \sin \lambda x) = \frac{i}{\pi } \sum _{k=1}^K {{\tilde{x}}}_k \cos k x; \end{aligned}$$
(62)

therefore,

$$\begin{aligned} {{\tilde{x}}}_k = -\frac{i}{\pi } \left( \sum _{\lambda =1}^K \int _{0}^{2\pi } \cos k x (\mathcal{T} \sin \lambda x) {\text{ d }} \right) y_{\lambda }. \end{aligned}$$
(63)

We can, therefore, represent \(\mathcal{T}\) on the truncated functions by the matrix

$$\begin{aligned} \left[ \begin{array}{cc} 0 &{} -i R \\ -i L &{} 0 \end{array}\right] , \quad R_{k,\lambda }&= \int _{0}^{2\pi } \cos k x (\mathcal{T} \sin \lambda x) \frac{{\text{ d }}}{\pi }, \quad L_{k,\lambda }\nonumber \\&= \int _{0}^{2\pi } \sin k x (\mathcal{T} \cos \lambda x) \frac{{\text{ d }}}{\pi }, \end{aligned}$$
(64)

k, \(\lambda = 1,\ldots K\). Representing D, \(\tanh (h(\cdot ) D)\) by matrices \(M_1\), \(M_2\), respectively, obtained as above, we symmetrize numerically by considering \(1/2(M_1 M_2 + M^T_2 M^T_1)\), \(M^T\) the transpose of M. \(M_1 M_2\) and its symmetrization are block diagonal in the odd and even subspaces. We, therefore, compute even and odd numerical eigenfunctions. By the discussion above, the discretization of the operators \({\mathscr {A}}_1\), \({\mathscr {A}}_2\), \({\mathscr {A}}_{1,\kappa }(\beta )\), and \({\mathscr {A}}_{G_{0,\kappa }}(\beta )\) follows the same scheme and leads to symmetric matrices that are block diagonal in the odd and even subspaces.

Computations of eigenvalues and eigenvectors used the Matlab implementation of the QR algorithm, see [26] also used in LAPACK. We used discretizations with \(K = 2^4 \) to \(2^9\), results in figures use \(K = 2^6\). Computations by the MacBook Pro 3.1 Ghz Intel Core i5 take up to two seconds.

We now consider the operator \({\mathscr {A}}_{G_0}\) up to order one in \(\beta \). We have

$$\begin{aligned}{}[D\tanh (h(x) D)f](x)= & {} -i\partial _x (2 \pi )^{-1} \int _{\mathbb {R}} \tanh (h(x) k){\hat{f}}(k) e^{ik x} {\text{ d }} \nonumber \\= & {} (2 \pi )^{-1} [-i \int _{\mathbb {R}}[(\partial _x\tanh (h(x)k)){\hat{f}}(k) e^{i k x} {\text{ d }} k \nonumber \\&\quad + \int _{\mathbb {R}} (\tanh (h(x) k)){\hat{f}}(k)k e^{i k x} {\text{ d }}] \nonumber \\= & {} (2 \pi )^{-1} [i\beta '(x) \int _{\mathbb {R}} \text {sech}^2(h(x) k) k {\hat{f}} (k ) e^{i k x} {\text{ d }} \nonumber \\&\quad + \int _{\mathbb {R}} (\tanh (h(x) k)){\hat{f}}( k) k e^{i k x} {\text{ d }}] \nonumber \\= & {} i\beta '(x) [\text {sech}^2(h(x)D)Df](x) + [\tanh (h(x)D)Df](x),\nonumber \\ \end{aligned}$$
(65)

using

$$\begin{aligned} \partial _x(\tanh (h(x) k))= & {} -\text {sech}^2(h(x) k)\beta '(x) k, \end{aligned}$$

and \(\partial _xh(x)=\partial _x(h_0-\beta (x))=-\beta '(x)\). Furthermore,

$$\begin{aligned}{}[i\beta '(x)\text {sech}^2(h(x)D)Df](x)= & {} i\beta '(x) (2 \pi )^{-1} \int _{\mathbb {R}} [\text {sech}^2(h_0 k)+ O(\beta ^2)] k {\hat{f}}(k) e^{i k x} {\text{ d }} \\= & {} i\beta '(x)[\text {sech}^2(h_0D)D^2f](x) + O(\beta ^2), \end{aligned}$$

and

$$\begin{aligned}{}[\tanh (h(x)D)Df](x)= & {} \int _{\mathbb {R}}\left( \tanh (h_0 k)-\text {sech}^2(h_0 k)\beta (x) k+ O(\beta ^2)\right) {\hat{f}}(k) k e^{i k x} \frac{{\text{ d }}}{2 \pi } \\= & {} [\tanh (h_0D)Df](x) - \beta (x)[\text {sech}^2(h_0 D)D^2 f](x) + O(\beta ^2). \end{aligned}$$

Therefore, (65) leads to

$$\begin{aligned} D \tanh (h(x)D)= & {} \tanh (h_0 D)D + i\beta '\text {sech}^2(h_0 D)D - \beta \text {sech}^2(h_0 D)D^2 + O(\beta ^2). \end{aligned}$$

We also have \( (\tanh (h_0 D))^* = - \tanh (h_0 D)\), \(D^*= - D\), \((\text {sech}^2(h_0 D))^* = \text {sech}^2(h_0 D)\), \( (i\beta \cdot )^* = i\beta \cdot \), \((\beta \cdot )^* = \beta \cdot \), so that

$$\begin{aligned} \textit{Sym}(D\tanh (h(x)D))= & {} D\tanh (h_0 D) + \frac{1}{2}[ i\beta '\text {sech}^2(h_0 D)D - \beta \text {sech}^2(h_0 D)D^2 \nonumber \\&- i D \text {sech}^2(h_0 D) \beta ' + D^2 \text {sech}^2(h_0 D) \beta ] + O(\beta ^2). \end{aligned}$$
(66)

Operators \(\text {sech}^2 (h_0 D)\), \(\beta \cdot \) (with \(\beta \) even) are real and preserve parity, while \(i \beta ' \cdot \), and D are imaginary and reverse parity. It follows that the operator \({\mathscr {A}}_2\) of (16) obtained by truncating (66) to \(O(\beta ^2)\) is real and preserves parity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Magaña, R.M., Panayotaros, P. & Minzoni, A.A. Linear Modes for Channels of Constant Cross-Section and Approximate Dirichlet–Neumann Operators. Water Waves 1, 343–370 (2019). https://doi.org/10.1007/s42286-019-00010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-019-00010-z

Keywords

Navigation