Skip to main content
Log in

Low Regularity Solutions for Gravity Water Waves

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

We prove local well-posedness for the gravity water waves equations without surface tension, with initial velocity field in \(H^s\), \(s > \frac{d}{2} + 1 - \mu \), where \(\mu = \frac{1}{10}\) in the case \(d = 1\) and \(\mu = \frac{1}{5}\) in the case \(d \ge 2\), extending previous results of Alazard–Burq–Zuily. The improvement primarily arises in two areas. First, we perform an improved analysis of the regularity of the change of variables from Eulerian to Lagrangian coordinates. Second, we perform a time-interval length optimization of the localized Strichartz estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Strichartz estimates for water waves. Ann. Sci. Ec. Norm. Supér. (4) 44(5), 855–903 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: The water-wave equations: from Zakharov to Euler. In: Studies in Phase Space Analysis with Applications to PDEs. Springer, New York, pp 1–20 (2013)

  4. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alazard, T., Burq, N., Zuily, C.: Strichartz estimates and the Cauchy problem for the gravity water waves equations. Mem. AMS (to appear) (2014)

  6. Bahouri, H., Chemin, J.-Y.: Équations d’ondes quasilinéaires et estimations de Strichartz. Am. J. Math. 121(6), 1337–1377 (1999)

    Article  MATH  Google Scholar 

  7. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343. Springer, New York (2011)

    Book  MATH  Google Scholar 

  8. Christianson, H., Hur, V.M., Staffilani, G.: Strichartz estimates for the water-wave problem with surface tension. Commun. Partial Differ. Equ. 35(12), 2195–2252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Poyferré, T., Nguyen, Q.-H.: A paradifferential reduction for the gravity-capillary waves system at low regularity and applications. arXiv preprint: arXiv:1508.00326 (2015)

  11. de Poyferre, T., Nguyen, Q.-H.: Strichartz estimates and local existence for the gravity-capillary waves with non-Lipschitz initial velocity. J. Differ. Equ. 261(1), 396–438 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harrop-Griffiths, B., Ifrim, M., Tataru, D.: Finite depth gravity water waves in holomorphic coordinates. Ann. PDE 3(1), 4 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lannes, D.: The water waves problem. In: Mathematical Surveys and Monographs, p. 188 (2013)

  18. Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. In: Ennio de Giorgi Mathematical Research Center Publication, Edizione della Normale (2008)

  19. Marzuola, J., Metcalfe, J., Tataru, D.: Wave packet parametrices for evolutions governed by PDO’s with rough symbols. Proc. Am. Math. Soc. 136(2), 597–604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nguyen, Q.-H.: Sharp Strichartz estimates for water waves systems. arXiv preprint: arXiv:1512.02359 (2015)

  21. Nguyen, H.Q.: A sharp Cauchy theory for the 2D gravity-capillary waves. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier, London (2017)

  22. Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, H.F., Tataru, D.: Sharp local well-posedness results for the nonlinear wave equation. Ann. Math. 291–366 (2005)

  25. Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122(2), 349–376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, II. Am. J. Math. 123(3), 385–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III. J. Am. Math. Soc. 15(2), 419–442 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tataru, D.: Phase space transforms and microlocal analysis. Phase Space Anal. Partial Differ. Equ. 2, 505–524 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Taylor, M.E: Pseudodifferential operators and linear PDE. In: Pseudodifferential Operators and Nonlinear PDE. Springer, New York (1991)

  30. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank his advisor, Daniel Tataru, for introducing him to this research area and for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Ai.

Additional information

The author was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program, as well as by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, A. Low Regularity Solutions for Gravity Water Waves. Water Waves 1, 145–215 (2019). https://doi.org/10.1007/s42286-019-00002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-019-00002-z

Keywords

Navigation