Skip to main content
Log in

Magnetocaloric Effect in SmNi2 Compound

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The structure and magnetocaloric properties of SmNi2 intermetallic material has been studied by X-ray diffraction and magnetic measurements. Rietveld refinements and energy dispersive X-ray spectroscopy detector show that the SmNi2 intermetallic is single phase. This intermetallic adopts the MgCu2 structure type of cubic Laves phase (space group \( Fd\bar{3}m \)) and stabilizes without vacancy in Sm site. The magnetic properties and the entropy change have been investigated by the magnetic measurements. The compound obeys to the second-order magnetic phase transition. The Curie temperature of SmNi2 is determined by the minima of dM/dT. The magnetocaloric effect has been estimated using two different approaches, the thermodynamic Maxwell’s relation and the Landau theory. These studies are discussed in terms of magnetocaloric effect (MCE). The maximum value of the magnetic entropy (\( \Delta {\text{S}}_{\text{M}} \)) is equal to 1.82 J/kg K and the relative cooling power for SmNi2 is equal to 23.5 J/kg. Besides, the MCE analysis proves a contribution of the magnetoelastic coupling to the entropy change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta S, Suresh KG, Lukoyanov AV (2015) J Mater Sci 50:5723–5728

    CAS  Google Scholar 

  2. Li L, Yi Y, Su K, Qi Y, Huo D, Pöttgen R (2016) J Mater Sci 51:5421–5426

    CAS  Google Scholar 

  3. Gupta S, Suresh KG, Lukoyanov AV, Knyazev YV, Kuz’min YI (2016) J Mater Sci 51:6341–6347

    CAS  Google Scholar 

  4. Kou RH, Gao J, Wang G, Liu YD, Wang YD, Ren Y, Brown DE (2016) J Mater Sci 51:1896–1902

    CAS  Google Scholar 

  5. Tedesco JCG, Carvalho AMG, Christensen NB, Kockelmann W, Telling MTF, Yokaichiya F, Többens DM, Simeoni GG, Cardoso LP, Coelho AA, Bordallo HN (2015) J Mater Sci 50:2884–2892

    CAS  Google Scholar 

  6. Guetari R, Bez R, Belhadj A, Zehani K, Bezergheanu A, Mliki N, Bessais L, Cizmas CB (2014) J. Alloys Compd. 588:64–69

    CAS  Google Scholar 

  7. Bartok A, Kustov M, Cohen LF, Pasko A, Zehani K, Bessais L, Mazaleyrat F, Lobue M (2016) J Mag Mag Mat 400:333–338

    CAS  Google Scholar 

  8. Charfeddine S, Zehani K, Bessais L, Korchef A (2016) J Solid State Chem 238:15–20

    CAS  Google Scholar 

  9. Gschneidner KA, Pecharsky VK, Tsokol AO (2005) Rep Prog Phys 68:1479

    CAS  Google Scholar 

  10. Nouri K, Jemmali M, Walha S, Zehani K, Bessais L, Ben Salah A (2016) J Alloys Compd 661:508–515

    CAS  Google Scholar 

  11. Khazzan S, Mliki N, Bessais L (2009) J Appl Phys 105:103904

    Google Scholar 

  12. Bessais L, Dorolti E, Djéga-Mariadassou C (2005) Appl Phys Lett 87:192503

    Google Scholar 

  13. Bensalem R, Tebib W, Alleg S, Suñol JJ, Bessais L, Greneche JM (2009) J Alloys Compd 471:24

    CAS  Google Scholar 

  14. Zehani K, Bez R, Boutahar A, Hlil EK, Lassri H, Moscovici J, Mliki N, Bessais L (2014) J Alloys Compd 591:58–64

    CAS  Google Scholar 

  15. Fersi R, Mliki N, Bessais L, Guetari R, Russier V, Cabié M (2012) J Alloys Compd 522:14–18

    CAS  Google Scholar 

  16. Khazzan S, Mliki N, Bessais L, Djéga-Mariadassou C (2010) J Supercond Nov Magn 322:224

    CAS  Google Scholar 

  17. Nouri K, Jemmali M, Walha S, Zehani K, Bessais L, Ben Salah A (2016) J Alloys Compd 658:672–677

    Google Scholar 

  18. Jemmali M, Walha S, Pasturel M, Tougait O, Hassen RB, Noel H (2010) J Alloys Compd 489:421423

    Google Scholar 

  19. Cregg PJ, Bessais L (1999) J Magn Magn Mater 202:554

    CAS  Google Scholar 

  20. Walha S, Jemmali M, Skini R, Noel H, Dhahri E, Hassen R, Hlil E (2014) J Supercond Nov Magn 27:2131–2137

    CAS  Google Scholar 

  21. Chu F, Chen Z, Fuller CJ, Lin CL, Mihalisin T (1996) J Appl Phys 79:6405

    CAS  Google Scholar 

  22. Aoki K, Xg L, Masumoto T (1992) Acta Mater. 40:221–227

    CAS  Google Scholar 

  23. Jiang C (2007) Acta Mater. 55:1599–1605

    CAS  Google Scholar 

  24. Paul-Boncour V, Lindbaum A, Latroche M, Heathman S (2006) Intermetallics. 14:483–490

    CAS  Google Scholar 

  25. Selhaoui N, Kleppa OJ (1993) J Alloys Compd 191:145–149

    CAS  Google Scholar 

  26. Colinet C, Pasturel A, Buschow KHJ (1987) J Appl Phys 62:3712–3717

    CAS  Google Scholar 

  27. Subramanian PR, Smith JF (1985) Metall Trans 16B:577–584

    CAS  Google Scholar 

  28. Reddy BP, Babu R, Nagarajan K, Rao PRV (1997) J Nucl Mat 247:235–239

    Google Scholar 

  29. Palumbo M, Borzone G, Delsante S, Parodi N, Cacciamani G, Ferro R, Battezzati L, Baricco M (2004) Intermetallics 12:1367–1372

    CAS  Google Scholar 

  30. Borzone G, Parodi N, Raggio R (2001) R. Ferro. J Alloys Compd 317–318:532–536

    Google Scholar 

  31. Schott J, Sommer F (1986) J Less-Common Met 119:307–317

    CAS  Google Scholar 

  32. Rong Q, Schaller HJ (2004) J Alloys Compd 365:188–196

    CAS  Google Scholar 

  33. Skrabeck EA, Wallacex WE (1963) J Appl Phys 34:1356

    Google Scholar 

  34. Plaza EJR, de Sousa VSR, Von Ranke PJ, Gomes AM, Rocco DL, Leitão JV, Reis MS (2009) J Appl Phys 105:013903

    Google Scholar 

  35. Rietveld H (1969) J Appl Crystallogr 2:65–71

    CAS  Google Scholar 

  36. Wiles DB, Young RA (1981) J Appl Crystallogr 14:149

    CAS  Google Scholar 

  37. Gratz E, Kottar A, Lindbaum A, Mantler M, Latroche M, Paul-Boncour V, Acet M, Barner C, Holzapfel WB, Pacheco V, Yvon K (1996) J Phys Condens Matter 8:8351–8361

    CAS  Google Scholar 

  38. Gratz E, Goremychkin E, Latroche M, Hilscher G, Rotter M, Müller H, Lindbaum A, Michor H, Paul-Boncour V, Fernandez-Diaz T (1999) J Phys Condens Matter 11:7893–7905

    CAS  Google Scholar 

  39. Latroche M, Paul-Boncour V, Percheron-Guégan A, Achard JC (1990) J Less Common Met 161:L27–L31

    CAS  Google Scholar 

  40. Delsante S, Stifanese R, Borzone G (2013) J Chem Thermodyn 65:73–77

    CAS  Google Scholar 

  41. Ibarra MR, Del Moralph A (1984) J Phys Chem Solids 45:789–795

    CAS  Google Scholar 

  42. Kuchin AG, Ermolenko AS, Kulikov YA, Khrabrov VI, Rosenfeld EV, Makarova GM, Lapina TP, Belozerov YV (2006) J Magn Magn Mater 303:119–126

    CAS  Google Scholar 

  43. Pecharsky VK Jr, Gschneidner K (1999) J. Appl. Phys 86:565–575

    CAS  Google Scholar 

  44. Kamilov IK, Gamzatov AG, Aliev AM, Batdalov AB, Aliverdiev AA, Abdulvagidov SB, Melnikov OV, Gorbenko OYu, Kaul AR (2007) J Phys D Appl Phys 40:4413

    CAS  Google Scholar 

  45. Plaza EJR, de Sousa VSR, Reis MS, Von Ranke PJ (2010) J Alloys Compd 505:357

    CAS  Google Scholar 

  46. Boutahar A, Lassri H, Zehani K, Bessais L, Hlil EK (2014) J Magn Magn Mater 369:92–95

    CAS  Google Scholar 

  47. Marcos JS, Fernández JR, Chevalier B, Bobet JL, Etourneau J (2004) J Magn Magn Mater 272:580

    Google Scholar 

  48. Banerjee SK (1964) Phys Lett 12:16

    Google Scholar 

  49. Amaral VS, Amaral JS (2007) J. Magn. Magn. Mater. 272:2104–2105

    Google Scholar 

  50. Tozri A, Dhahri E, Hlil EK (2010) Mater Lett 64:2138

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bessais.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, K., Saidi, M., Walha, S. et al. Magnetocaloric Effect in SmNi2 Compound. Chemistry Africa 3, 111–118 (2020). https://doi.org/10.1007/s42250-019-00095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00095-6

Keywords

Navigation