Skip to main content
Log in

Textile Wastewater Treatment by Peroxydisulfate/Fe(II)/UV: Operating Cost Evaluation and Phytotoxicity Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The discharges of the wastewater from the textile industry generate a substantial quantity of effluents which can cause various environmental problems, if disposed of without any prior treatment. Therefore, the treatment of these textile effluents is necessary. The present study aims to investigate the removal efficiency of colors from wastewater containing mixed primary direct dyes and real textile industry wastewater using PDS (Peroxydisulfate)/Fe(II)/UV process. A simulated mixture, based on an industrial recipe and containing Reactive Yellow 17 (RY17), Reactive Red 120 (RR120), and Reactive Blue 19 (RB19), was investigated. The obtained results showed that the mineralization rate is around 96.1% for RY17, 99.2% for RR120, 100% for RB19 and 80% for their mixed during 2 h of the treatment. The degradation of real textile wastewater was about 66% under similar conditions. The evaluations showed that ~ 93.82 MAD/m3 (~ 8.64 EURO/m3) is needed to supply the operating cost. As a vital industrial criterion, it was estimated that the conditions of initial pH of 3, [PDS] = 1 mM and T = 25 °C the highest cost effective case of the process for degrading the mixed dyes. Phytotoxicity studies revealed that the degradation products of mixed dyes and textile effluent were scarcely toxic in nature, thereby increasing the applicability of PDS/Fe(II)/UV for the treatment of textile wastewater. This will open a perspective for the reuse of treated water in crop irrigation. Based on the results of the advanced oxidation technologies experiments, it was found that PDS/Fe(II)/UV is the best treatment method for real textile wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOT:

Advanced oxidation technology

CC:

Chemical cost

DE:

Degradation efficiency

RB19:

Reactive blue 19

EC:

Electricity cost

UV:

Ultra violet

K :

Rate constant

RR120:

Reactive Red 120

PDS:

Peroxydisulfate

RY17:

Reactive Yellow 17

COD:

Chemical oxygen demand

MD:

Mixed dyes

Dt:

Reaction time

MAD:

Moroccan Dirham

OC:

Operating cost

TW:

Textile wastewater

BOD:

Biochemical oxygen demand

EEC:

Electrical energy consumption

References

  1. Sahu O, Singh N (2019) Significance of bioadsorption process on textile industry wastewater (Chap. 13). In: The impact and prospects of green chemistry for textile technology. Elsevier, pp 367–416. https://doi.org/10.1016/B978-0-08-102491-1.00013-7

    Chapter  Google Scholar 

  2. Sharma A, Syed Z, Brighu U, Gupta AB, Ram C (2019) J Clean Prod 220:23–32

    Article  CAS  Google Scholar 

  3. Laqbaqbia M, García-Payoa MC, Khayeta M, El Kharrazc J, Chaouchb M (2019) Sep Purif Technol 209:815–825

    Article  Google Scholar 

  4. Lin CY, Chiang CC, Nguyen TML, Lay CH (2017) Int J Hydro Ener 42:29159–29165

    Article  CAS  Google Scholar 

  5. Khatri A, Peerzada MH, Mohsin M, White M (2015) J Clean Prod 87:50–57

    Article  CAS  Google Scholar 

  6. Takeda K, Fujisawa K, Nojima H, Kato R, Ueki R, Sakugawa H (2017) J Photochem Photobiol A Chem 340:8–14

    Article  CAS  Google Scholar 

  7. Gao Y, Zhang Z, Li S, Liu L, Yao L, Li Y, Zhang H (2016) Appl. Catal B Environ 185:22–30

    Article  CAS  Google Scholar 

  8. Zhang R, Wang X, Zhou L, Crump D (2019) Chem Eng J 361:960–967

    Article  CAS  Google Scholar 

  9. Bougdour N, Tiskatine R, Bakas I, Assabbane A (2019) Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.08.083

    Article  Google Scholar 

  10. Matzek LW, Carter KE (2016) Chemosphere 151:178–188

    Article  CAS  Google Scholar 

  11. Oh WD, Dong Z, Lim TT (2016) Appl Catal B Environ 194:169–201

    Article  CAS  Google Scholar 

  12. Ji Y, Dong C, Kong D, Lu J, Zhou Q (2015) Chem Eng J 263:45–54

    Article  CAS  Google Scholar 

  13. Wei Z, Villamena FA, Weavers LK (2017) Environ Sci Technol 51:3410–3417

    Article  CAS  Google Scholar 

  14. Lin C, Lee L, Hsu L (2013) J Photochem Photobiol A Chem 252:1–7

    Article  CAS  Google Scholar 

  15. Ahmed MM, Barbati S, Doumenq P, Chiron S (2012) Chem Eng J 197:440–447

    Article  Google Scholar 

  16. Dong Z, Jiang C, Yang J, Zhang X, Dai W, Cai P (2019) J Hazar Mater 373:519–526

    Article  CAS  Google Scholar 

  17. Ji Y, Ferronato C, Salvador A, Yang X, Chovelon JM (2014) Sci Total Environ 472:800–808

    Article  CAS  Google Scholar 

  18. Xu XR, Li XZ (2010) Sep purif Technol 72:105–111

    Article  CAS  Google Scholar 

  19. Bougdour N, Sennaoui A, Bakas I, Assabbane A (2018) Sci Technol Mater 30(3):157–165

    Article  Google Scholar 

  20. Dubber D, Gray NF (2010) J Environ Sci Health, Part A 45(12):1595–1600

    Article  CAS  Google Scholar 

  21. Bayramoglu M, Kobya M, Can OT, Sozbir M (2004) Sep Purif Technol 37:117–125

    Article  CAS  Google Scholar 

  22. Zarei AR, Rezaeivahidian H, Soleymani AR (2015) Proces Safe Environ Prot 98:109–115

    Article  CAS  Google Scholar 

  23. Behnajady MA, Modirshahla N (2006) Ind Eng Chem Res 45:553. https://doi.org/10.1016/j.psep.2015.07.006

    Article  CAS  Google Scholar 

  24. Behnajady MA, Vahid B, Modirshahla N, Shokri M (2009) Desali 249:99–103

    Article  CAS  Google Scholar 

  25. Zou J, Peng X, Li M, Xiong Y, Wang B, Dong F, Wang B (2017) Chemos 171:332–338

    Article  CAS  Google Scholar 

  26. Saratale RG, Sivapathan S, Saratale GD, Banu JR, Kim DS (2019) Ecotoxicol Environ Saf 167:385–395. https://doi.org/10.1016/j.ecoenv.2018.10.042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bougdour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougdour, N., Tiskatine, R., Bakas, I. et al. Textile Wastewater Treatment by Peroxydisulfate/Fe(II)/UV: Operating Cost Evaluation and Phytotoxicity Studies. Chemistry Africa 3, 153–160 (2020). https://doi.org/10.1007/s42250-019-00094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00094-7

Keywords

Navigation