Skip to main content
Log in

Development and Comparison of Surface-Enhanced Raman Scattering Gold Substrates for In Situ Characterization of ‘Model’ Analytes in Organic and Aqueous Media

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Surface-Enhanced Raman Spectroscopy (SERS) is a technique that provides high enhancement of Raman scattering from molecules adsorbed on a rough noble metal surface. The aim of this study was the development of convenient and reproducible in situ SERS methods suitable for the detection and the quantification of analytes in organic or aqueous media. For this purpose, we used a signal acquisition technique which simply consisted of recording the SERS signal in the bulk solution by using a Raman immersion probe close to the surface of the immersed solid SERS substrate. This method should be useful for on-line process analysis and more robust than conventional acquisition techniques that are generally based on a drying step which may induce heterogeneous analyte repartition onto the substrate surface, thus often requiring the use of SERS mapping technique to improve the signal reproducibility. In this study, two types of gold SERS substrates (metal nanostructures on a solid substrate and metal nanoparticles in suspension) were investigated and compared for the in situ characterization of two ‘model’ analytes, Rhodamine 6G (R6G) and 1,2-bis(4-pyridyl)ethylene (BPE), in aqueous and organic media. The solid substrate developed by sputtering deposition of a nanometric gold film onto a glass slide provided reproducible and stable SERS signals of BPE in organic media at concentration down to 10−12 M. But it appeared unusable in aqueous solutions due to the removal of the gold deposit. Despite an improvement of the deposit adhesion onto the substrate by using tetraethoxysilane/(3-mercaptopropyl) trimethoxysilane sol or the use of an electroless deposition technique, the developed solid substrates did not allow to reach satisfying R6G SERS signal in aqueous solutions. Therefore, both star-like and spherical gold nanoparticles were finally developed and used as SERS substrates. After aggregation, colloids induced the best enhancement of R6G Raman signal with a possible quantification at concentrations down to 5.10−9 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  2. Hong S, Li X (2013) J Nanomater 2013:1–9

    Google Scholar 

  3. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  4. Schlücker S (2014) Angew Chem Int Ed 53:4756–4795

    Article  CAS  Google Scholar 

  5. Brown RJC, Milton MJT (2008) J Raman Spectrosc 39:1313–1326

    Article  CAS  Google Scholar 

  6. Brolo AG, Irish DE, Smith BD (1997) J Mol Struct 405:29–44

    Article  CAS  Google Scholar 

  7. Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 2(85):1851–1997

    Google Scholar 

  8. Tognalli NG, Fainstein A, Vericat C, Vela ME, Salvarezza RC (2006) J Phys Chem B 110:354–360

    Article  CAS  PubMed  Google Scholar 

  9. Fan M, Brolo AG (2009) Phys Chem Chem Phys 11:7381–7389

    Article  CAS  PubMed  Google Scholar 

  10. Kahl M, Voges E, Kostrewa S, Viets C, Hill W (1998) Sensors Actuators B Chem 51:285–291

    Article  CAS  Google Scholar 

  11. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  12. Haynes CLC, Van Duyne RPR (2003) J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  13. Liu GL, Lee LP (2005) Appl Phys Lett 87:1–3

    Google Scholar 

  14. Degioanni S, Jurdyc AM, Cheap A, Champagnon B, Bessueille F, Coulm J, Bois L, Vouagner D (2015) J Appl Phys 118:1–7

    Article  CAS  Google Scholar 

  15. Chu HV, Liu Y, Huang Y, Zhao Y (2007) Opt Express 15:12230–12239

    Article  CAS  PubMed  Google Scholar 

  16. Merlen A, Chevallier V, Valmalette JC, Lagugné-Labarthet F, Harté E (2009) Nanotechnology 20:920–921

    Article  CAS  Google Scholar 

  17. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1629–1632

    Article  CAS  PubMed  Google Scholar 

  18. Park HK, Yoon JK, Kim K (2006) Langmuir 22:1626–1629

    Article  CAS  PubMed  Google Scholar 

  19. Bao L, Mahurin SM, Haire RG, Dai S (2003) Anal Chem 75:6614–6620

    Article  CAS  PubMed  Google Scholar 

  20. Volkan M, Stokes DL, Vo-Dinh T (2005) Sensors Actuators B Chem 106:660–667

    Article  CAS  Google Scholar 

  21. Yang L, Yan B, Premasiri WR, Ziegler LD, Negro LD, Reinhard BM (2010) Adv Funct Mater 20:2619–2628

    Article  CAS  Google Scholar 

  22. Zhang Q, Lee YH, Phang IY, Lee CK, Ling XY (2014) Small 10:2703–2711

    Article  CAS  PubMed  Google Scholar 

  23. Ma B, Li P, Yang L, Liu J (2015) Talanta 141:1–7

    Article  CAS  PubMed  Google Scholar 

  24. Larmour IA, Faulds K, Graham D (2012) J Raman Spectrosc 43:202–206

    Article  CAS  Google Scholar 

  25. Mamián-López MB, Poppi RJ (2013) Anal Bioanal Chem 405:7671–7677

    Article  CAS  PubMed  Google Scholar 

  26. Abalde-Cela S, Hermida-Ramón JM, Contreras-Carballada P, De Cola L, Guerrero-Martínez A, Alvarez-Puebla RA, Liz-Marzán LM (2011) Chem Phys Chem 12:1529–1535

    Article  CAS  PubMed  Google Scholar 

  27. Cao Y, Lv M, Xu H, Svec F, Tan T, Lv Y (2015) Anal Chim Acta 896:111–119

    Article  CAS  PubMed  Google Scholar 

  28. Minati L, Benetti F, Chiappini A, Speranza G (2014) Colloids Surfaces A Physicochem Eng Asp 441:623–628

    Article  CAS  Google Scholar 

  29. Frens G (1973) Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  30. Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  31. Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stéphan O (2010) Langmuir 26:8729–8736

    Article  CAS  PubMed  Google Scholar 

  32. Chassagneux F, Bois L, Simon JP, Desroches C, Brioude A (2011) J Mater Chem 21:11947–11955

    Article  CAS  Google Scholar 

  33. Zeng QC, Zhang E, Dong H, Tellinghuisen J (2008) J Chromatogr A 1206:147–152

    Article  CAS  PubMed  Google Scholar 

  34. Coluccio ML, Das G, Mecarini F, Gentile F, Pujia A, Bava L, Tallerico R, Candeloro P, Liberale C, De Angelis F, Di Fabrizio E (2009) Microelectron Eng 86:1085–1088

    Article  CAS  Google Scholar 

  35. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerne WE (2006) J. Chem. Phys. 124:061101

    Article  CAS  Google Scholar 

  36. Ko H, Singamaneni S, Tsukruk VV (2008) Small 4:1576–1599

    Article  CAS  PubMed  Google Scholar 

  37. Nikoobakht B, Wang J, El-Sayed MA (2002) Chem Phys Lett 366:17–23

    Article  CAS  Google Scholar 

  38. Zhao LL, Jensen L, Schatz GC (2006) Nano Lett 6:1229–1234

    Article  CAS  PubMed  Google Scholar 

  39. Grochala W, Kudelski A, Bukowska J (1998) J Raman Spectrosc 29:681–685

    Article  CAS  Google Scholar 

  40. Schneider S, Grau H, Halbig P, Freunscht P, Nickel U (1996) J Raman Spectrosc 27:57–68

    Article  CAS  Google Scholar 

  41. Mackenzie JD (1994) J Sol Gel Sci Technol 2:81–86

    Article  CAS  Google Scholar 

  42. Dean SL, Stapleton JJ, Keating CD (2010) Langmuir 26:14861–14870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang D, Chong SL, Malik A (1997) Anal Chem 69:4566–4576

    Article  CAS  Google Scholar 

  44. Brown KR, Walter DG, Natan MJ (2000) Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  45. Hrapovic S, Liu Y, Enright G, Bensebaa F, Luong JHT (2003) Langmuir 19:3958–3965

    Article  CAS  Google Scholar 

  46. Cyrankiewicz M, Wybranowski T, Kruszewski S (2007) J Phys Conf Ser 79:1–6

    Article  CAS  Google Scholar 

  47. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Anal Chem 79:4215–4221

    Article  CAS  PubMed  Google Scholar 

  48. Fabris L (2015) J Opt 17:1–14

    Article  CAS  Google Scholar 

  49. Xu JX, Siriwardana K, Zhou Y, Zou S, Zhang D (2018) Anal Chem 90:785–793

    Article  CAS  PubMed  Google Scholar 

  50. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Nano Lett 7:729–732

    Article  CAS  PubMed  Google Scholar 

  51. Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857

    Article  CAS  PubMed  Google Scholar 

  52. Le Ru EC, Meyer M, Etchegoin PG, Blackie E (2007) J Phys Chem C 111:13794–13803

    Article  CAS  Google Scholar 

  53. Kalachyova Y, Mares D, Jerabek V, Ulbrich P, Lapcak L, Lyutakov O (2017) Phys Chem Chem Phys 19:14761–14769

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Q, Meng G, Zheng P, Cushing S, Wu N, Huang Q, Zhu C, Zhang Z, Wang Z (2015) Sci Rep 5:1–11

    Google Scholar 

  55. Ujihara M, Dang NM, Imae T (2017) Sensors 17:1–12

    Article  CAS  Google Scholar 

  56. Guselnikova O, Postnikov P, Kalachyova Y, Kolska Z (2017) ChemNanoMat 3:135–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Akanny.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akanny, E., Bonhommé, A., Bois, L. et al. Development and Comparison of Surface-Enhanced Raman Scattering Gold Substrates for In Situ Characterization of ‘Model’ Analytes in Organic and Aqueous Media. Chemistry Africa 2, 309–320 (2019). https://doi.org/10.1007/s42250-019-00053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00053-2

Keywords

Navigation