Skip to main content
Log in

Oligoester-Derivatized (Semi-)Interpenetrating Polymer Networks as Nanostructured Precursors to Porous Materials with Tunable Porosity

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Porous polymeric materials with tunable porosity can be engineered from oligoester-derivatized semi-interpenetrating polymer networks (semi-IPNs) or IPNs, respectively composed of either uncrosslinked or crosslinked aliphatic oligoesters entangled in a stiff subnetwork. In this paper, miscellaneous polyester/poly(methyl methacrylate)-based semi-IPN and IPN systems are first prepared as precursors with varying structural parameters, especially the nature [i.e., poly(d,l-lactide), poly(ε-caprolactone)] and the molar mass (i.e., from 560 to 3700 g mol−1) of the oligoester precursor. (Nano)porous networks with defined porosity are then generated through two complementary routes. This original paper discusses the scope and limitations of both approaches and investigates the correlation between the structure and morphology of the generated networks and the porosity of the resulting porous materials. We demonstrate that the choice of the precursors with defined compatibility is of paramount significance in the length scale of phase separation associated with nanostructured networks as well as in the porosity scale of (nano)porous materials derived therefrom. Indeed, we find that the quantitative extraction of uncrosslinked oligoesters from semi-IPNs allows for the elaboration of nanoporous networks with pore diameters lower than 150 nm, provided that a high miscibility between both partners in semi-IPN precursors is attained, i.e. when using the lower molar mass oligoester. Alternately, the total hydrolysis of the polyester subnetwork associated with IPNs offers more versatility, since nanoporous networks can be obtained with a pore size range of 20–150 nm, regardless of the oligoester nature and molar mass in IPN precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buchmeiser MR (2001) Angew Chem Int Ed 40:3795

    Article  CAS  Google Scholar 

  2. Sykora D, Peters EC, Svec F, Fréchet JMJ (2000) Macromol Mater Eng 275:42

    Article  CAS  Google Scholar 

  3. Hentze HP, Antonietti M (2002) Rev Mol Biotechnol 90:27

    Article  CAS  Google Scholar 

  4. Dauben M, Reichert KH, Huang P, Fock J (1996) Polymer 37:2827

    Article  CAS  Google Scholar 

  5. Allender CJ, Richardson C, Woodhouse B, Heard CM, Brain KR (2000) Int J Pharm 195:39

    Article  CAS  PubMed  Google Scholar 

  6. Byrne ME, Oral E, Hilt JZ, Peppas NA (2002) Polym Adv Technol 13:798

    Article  CAS  Google Scholar 

  7. Cameron NR (2004) Polymer 46:1439

    Article  CAS  Google Scholar 

  8. Poupart R, Benlahoues A, Le Droumaguet B, Grande D (2017) ACS Appl Mater Interfaces 9:31279

    Article  CAS  PubMed  Google Scholar 

  9. Mezhoud S, Paljevac M, Koler A, Le Droumaguet B, Grande D, Krajnc P (2018) React Funct Polym 132:51

    Article  CAS  Google Scholar 

  10. Balaji R, Boileau S, Guérin P, Grande D (2004) Polym News 29:205

    Article  CAS  Google Scholar 

  11. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Chem Rev 112:3959

    Article  CAS  PubMed  Google Scholar 

  12. Kayaman-Apohan N, Baysal BM (2001) Macromol Chem Phys 202:1182

    Article  CAS  Google Scholar 

  13. Widmaier JM, Sperling LH (1982) Macromolecules 15:625

    Article  CAS  Google Scholar 

  14. Widmaier JM, Sperling LH (1984) Br Polym J 16:46

    Article  CAS  Google Scholar 

  15. Du Prez F, Goethals EJ (1995) Macromol Chem Phys 196:903

    Article  CAS  Google Scholar 

  16. De Clercq RR, Goethals EJ (1992) Macromolecules 25:1109

    Article  Google Scholar 

  17. Hu J, Pompe G, Schulze U, Pionteck J (1998) Polym Adv Technol 9:746

    Article  CAS  Google Scholar 

  18. Hu J, Schulze U, Pionteck J (1999) Polymer 40:5279

    Article  CAS  Google Scholar 

  19. Pionteck J, Hu J, Schulze U (2003) J Appl Polym Sci 89:1976

    Article  CAS  Google Scholar 

  20. Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum Press, New York

    Book  Google Scholar 

  21. Sperling LH (1988) Comprehensive polymer science, vol 6. Pergamon Press, New York, pp 423–436

    Google Scholar 

  22. Sperling LH, Mishra V (1996) Polym Adv Technol 7:197

    Article  CAS  Google Scholar 

  23. Kim SC, Sperling LH (1997) IPNs around the world: science and engineering. Wiley, Chichester

    Google Scholar 

  24. Athawale VD, Kolekar SL, Raut SS (2003) J Macromol Sci Part C Polym Rev C43:1

    Article  CAS  Google Scholar 

  25. Thomas S, Grande D, Cvelbar U, Raju KVSN, Narayan R, Thomas S, Akhina H (2016) Micro- and nano-structured interpenetrating polymer networks: from design to applications. Wiley, Hoboken

    Book  Google Scholar 

  26. Dean K, Cook WD (2002) Macromolecules 35:7942

    Article  CAS  Google Scholar 

  27. Rohman G, Grande D, Lauprêtre F, Boileau S, Guérin P (2005) Macromolecules 38:7274

    Article  CAS  Google Scholar 

  28. Rohman G, Lauprêtre F, Boileau S, Guérin P, Grande D (2007) Polymer 48:7017

    Article  CAS  Google Scholar 

  29. Bachari A, Bélorgey G, Hélary G, Sauvet G (1995) Macromol Chem Phys 196:411

    Article  CAS  Google Scholar 

  30. Brun M, Lallemand A, Quinson JF, Eyraud C (1977) Thermochim Acta 21:59

    Article  CAS  Google Scholar 

  31. Iza M, Woerly S, Danumah C, Kaliaguine S, Bousmina M (2000) Polymer 41:5885

    Article  CAS  Google Scholar 

  32. Hay JN, Laity PR (2000) Polymer 41:6171

    Article  CAS  Google Scholar 

  33. Rabelo D, Coutinho FMB (1993) Polym Bull 30:725

    Article  CAS  Google Scholar 

  34. Okay O (2000) Prog Polym Sci 25:711

    Article  CAS  Google Scholar 

  35. Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, San Roman J (1998) Polymer 39:6891

    Article  CAS  Google Scholar 

  36. Klein PG, Ebdon JR, Hourston DJ (1988) Polymer 29:1079

    Article  CAS  Google Scholar 

  37. Grulke EA (1999) In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley-Interscience, New York, pp 7–679

    Google Scholar 

  38. Coleman MM, Serman CJ, Bhagwagar DE, Painter PC (1990) Polymer 31:1187

    Article  CAS  Google Scholar 

  39. Van Krevelen DW (1997) Properties of polymers. Elsevier, Amsterdam

    Book  Google Scholar 

  40. Majdoub R, Dirany M, Benzina M, Grande D (2013) Matériaux Tech 101:405

    Article  CAS  Google Scholar 

  41. Grande D, Beurroies I, Denoyel R (2010) Macromol Symp 291:168

    Article  CAS  Google Scholar 

  42. Grande D, Rohman G, Millot MC (2008) Polym Bull 61:129

    Article  CAS  Google Scholar 

  43. Lav TX, Carbonnier B, Guerrouache M, Grande D (2010) Polymer 51:5890

    Article  CAS  Google Scholar 

  44. Lav TX, Grande D, Gaillet C, Guerrouache M, Carbonnier B (2012) Macromol Chem Phys 213:64

    Article  CAS  Google Scholar 

  45. Yan J, Wang XH, Chen J (2000) J Appl Polym Sci 75:536

    Article  CAS  Google Scholar 

  46. Wei J, Bai XY, Yan J (2003) Macromolecules 36:4960

    Article  CAS  Google Scholar 

  47. Donatelli AA, Sperling LH, Thomas DA (1976) Macromolecules 9:671

    Article  CAS  Google Scholar 

  48. Hourston DJ, Schäfer FU (1996) Polymer 37:3521

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The “Région Ile-de-France” is gratefully acknowledged for financial support through SESAME projects allowing for the purchase of SEM equipment. The authors are indebted to late Prof. Ph. Guérin, Prof. F. Lauprêtre and Dr. S. Boileau for fruitful discussions in the field of chemistry and physico-chemistry of (semi-)IPNs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Grande.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grande, D., Rohman, G. Oligoester-Derivatized (Semi-)Interpenetrating Polymer Networks as Nanostructured Precursors to Porous Materials with Tunable Porosity. Chemistry Africa 2, 253–265 (2019). https://doi.org/10.1007/s42250-019-00044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00044-3

Keywords

Navigation