Skip to main content
Log in

Microwave-assisted preparation of biodegradable, hemocompatible, and antimicrobial neem gum–grafted poly (acrylamide) hydrogel using (3)2 factorial design

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The objective of the study was to prepare neem gum polysaccharide graft copolymers of acrylamide (NGP-g-Am) using 3 factorial design. Prepared NGP-g-Am’s hydrogels were characterized using UV-visible spectroscopy, FTIR spectral analysis, SEM images, contact angle determination, biodegradability, hemocompatibility, and pH-dependent swelling ability. NGP-g-Am showed more swelling index in all the media like double distilled water, 1 N NaOH, and 0.1 N HCl than native form. Data obtained through soil burial biodegradation studies were showed t90% for neem gum polysaccharide (NGP) and NGP-g-Am (N1), 9 and 28 days, respectively. Findings of the Lee-White test for blood clotting time showed the longest clotting time (15.39 ± 0.53 min) for NGP-g-Am (N5) as compared with that for the uncoated glass surface (2.05 ± 0.93 min). Thrombus formed during studies were found to be significantly more in case of uncoated glass surface as compared with N (0.47 ± 0.23 mg), N1 (0.29 ± 0.08 mg), N2 (0.30 ± 0.13 mg), N5 (0.29 ± 0.11 mg), N7 (0.29 ± 0.07 mg), and N9 (0.28 ± 0.13 mg). Structure-based docking studies predict that binding of ligands to TLR-4 receptors is significantly more responsible for the antimicrobial effect of both NGP and NGP-g-Am.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Groll, S. Smriti, A. Krystyna, M. Martin, Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J. Appl. Polym. Sci. A. Polym. Chem. 47, 5543–5549 (2009).

    Article  Google Scholar 

  2. H. Mittal, B.S. Kaith, R. Jindal, Synthesis, characterization and swelling behaviour of poly (acrylamide-comethacrylic acid) grafted Gum ghatti based superabsorbent hydrogels. Adv. Polym. Sci. Res. 1(3), 55–66 (2010)

    Google Scholar 

  3. R. Malviya, P.K. Sharma, S.K. Dubey, Modification of polysaccharides: pharmaceutical and tissue engineering applications with commercial utility (patents). Mater. Sci. Eng. C Mater. Biol. Appl. 68, 929–938 (2016)

    Article  Google Scholar 

  4. R. Malviya, P.K. Sharma, S.K. Dubey, Modification and applications of polysaccharide (Lap Lambert academic publishing, Germany, 2016)

    Google Scholar 

  5. N. Bankar, P. Aggarwal, A. Singh, D. Chakraborty, R. Singh, Water availability in different soils in relation to hydrogel application. Geoderma 187–188, 94–101 (2012)

    Google Scholar 

  6. L. Wu, M. Liu, Slow-release potassium silicate fertilizer with the function of superabsorbent and water retention. Ind. Eng. Chem. Res. 46, 6494–6500 (2007)

    Article  Google Scholar 

  7. R. Malviya, P.K. Sharma, S.K. Dubey, Antioxidant Potential and Emulsifying Properties of Neem (Azadirachita indica, Family Meliaceae) Gum Polysaccharide. Pharm. Anal. Acta 8, 559 (2017)

    Article  Google Scholar 

  8. A.B. Gangurde, S.S. Malode, R.S. Bhambar, Preliminary evaluation of neem gum as tablet binder. Indian J. Pharm. Educ. Res. 42(4), 344–347 (2008)

    Google Scholar 

  9. A.T. Ogunjimi, G.A. Biowu, Flow and consolidation properties of neem gum coprocessed with two pharmaceutical excipients. Powder Technol. 246, 187–192 (2013)

    Article  Google Scholar 

  10. R. Malviya, P.K. Sharma, S.K. Dubey, Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 772–784 (2018)

    Article  Google Scholar 

  11. Y.S. Choi, S.R. Hong, Y.M. Lee, K.W. Song, M.H. Park, Y.S. Nam, Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 20(5), 409–417 (1999)

    Article  Google Scholar 

  12. K. Ulubayram, A.N. Cakar, P. Korkusuz, C. Ertan, N. Hasirci, EGF containing gelatin-based wound dressings. Biomaterials 22(11), 1345–1356 (2001)

    Article  Google Scholar 

  13. R. Guidoin, D. Marceau, T.J. Roo, M. King, Y. Merhi, P.E. Roy, L. Martin, M. Duvel, In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial® graft. Biomaterials 8, 433–441 (1987)

    Article  Google Scholar 

  14. R.A. Jones, G. Ziemer, F.J. Schoen, L. Britton, A.R. Castaneda, A new sealant for knitted Dacron prostheses: minimally cross-linked gelatin. J. Vasc. Surg. 7, 414–419 (1998)

    Article  Google Scholar 

  15. K.S.C.R. dos Santos, J.F.J. Coelho, P. Ferreira, I. Pinto, S.G. Lorenzetti, E.I. Ferreira, O.Z. Higa, M.H. Gil, Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int. J. Pharm. 310, 37–45 (2006)

    Article  Google Scholar 

  16. K. Sharma, B.S. Kaith, V. Kumar, S. Som, S. Kalia, H.C. Swart, Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Adv. 3, 25830–25839 (2013)

    Article  Google Scholar 

  17. B.S. Kaith, R. Jindal, H. Mittal, K. Kumar, Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction-saline emulsions. J. Appl. Polym. Sci. 124, 2037–2047 (2012)

    Article  Google Scholar 

  18. H. Mittal, A. Maity, S.S. Ray, J. Phys, The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models. Chem. B. 119(5), 2026–2039 (2015)

    Article  Google Scholar 

  19. T.K. Giri, S. Pure, D.K. Tripathi, Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polimeros 25(2), 168–174 (2015)

    Article  Google Scholar 

  20. K. Sharma, V. Kumar, B.S. Kaith, V. Kumar, S. Som, S. Kalia, H.C. Swart, A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Adv. 4, 25637–25649 (2014)

    Article  Google Scholar 

  21. I.M. Thakore, S. Desai, B.D. Sarawade, S. Devi, Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur. Polym. J. 37, 151–160 (2001)

    Article  Google Scholar 

  22. A. Maghchiche, A. Haouam, B. Immirzi, Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J. Taibah Univ. Sci. 4, 9–16 (2010)

    Article  Google Scholar 

  23. L. Wu, M. Liu, R. Liang, Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour. Technol. 99(3), 547–554 (2008)

    Article  Google Scholar 

  24. H. Marsh, F. Rodriguez-Reinoso, in Activated carbon, 1st edn. Elsevier Sci Technol. Books, (2006), pp. 401–462

  25. G. Newcombe, R. Hayes, M. Drikas, Granular activated carbon: Importance of surface properties in the adsorption of naturally occurring organics. Colloid Surf. A. 78, 65–71 (1993)

    Article  Google Scholar 

  26. M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37, 1215–1221 (1999)

    Article  Google Scholar 

  27. S.L. Goertzen, K.D. Theriault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Standardization of the Boehm titration. Part I. CO 2 expulsion and endpoint determination. Carbon 48, 1252–1261 (2010)

    Article  Google Scholar 

  28. K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, N. Nakabayashi, Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. A. 26, 1543–1552 (1992)

    Article  Google Scholar 

  29. N.N. Reddy, K. Varaprasad, S. Ravindra, G.V.S. Reddy, K.M.S. Reddy, K.M.M. Reddy, K.M. Reddy, Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 385, 20–27 (2011)

    Article  Google Scholar 

  30. J.P. Singhal, A.R. Raya, Synthesis of blood compatible polyamide block copolymers. Biomaterials 23, 1139–1145 (2002)

    Article  Google Scholar 

  31. General chapter (11) USP reference standards United States Pharmacopoeia-27-National Formulary 22, (US Pharmacopoeial Convention Inc., Rockville, 2004), pp. 2111–2139

  32. R. Aravindhan, T. Sreelatha, P.T. Perumal, A. Gnanamani, Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin. Complex Met. 1, 69–79 (2014)

    Article  Google Scholar 

  33. P.J. Manna, T. Mitra, N. Pramanik, V. Kavitha, A. Gnanamani, P.P. Kundu, Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int. J. Biol. Macromolec. 75, 437–446 (2015)

    Article  Google Scholar 

  34. W. Fang, D. Bi, R. Zheng, N. Cai, H. Xu, R. Zhou, Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Sci. Rep. 7(1), 1663 (2017)

    Article  Google Scholar 

  35. C. Susan, A.J. Luke, O’Neill, How important are Toll-like receptors for antimicrobial responses? Cellular Microbiology, 9(8), 1891–1901 (2007)

  36. L. Lundin, A.M. Hermansson, Supermolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydr. Polym. 26, 129–140 (1995)

    Article  Google Scholar 

  37. S. Kaity, J. Issac, P.M. Kumar, A. Bose, T.W. Wong, A. Ghosh, Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery. Carbohydr. Polym. 98, 1083–1094 (2013)

    Article  Google Scholar 

  38. A.V. Singh, L.K. Nath, M. Guha, Microwave assisted synthesis and characterization of Phaseolus aconitifolius starch-g-acrylamide. Carbohydr. Polym. 86, 872–876 (2011)

    Article  Google Scholar 

  39. S. Saber-Samandari, M. Gazi, E. Yilmaz, UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym. Bull. 68, 1623–1639 (2012)

    Article  Google Scholar 

  40. W. Wang, A. Wang, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr. Polym. 80(4), 1028–1036 (2010)

    Article  Google Scholar 

  41. B.S. Saruchi, R. Kaith, G.S. Jindal, Kapur, Enzyme-based green approach for the synthesis of gum tragacanth and acrylic acid cross-linked hydrogel: its utilization in controlled fertilizer release and enhancement of water-holding capacity of soil. Iran Polym. J. I. 22, 561–570 (2013)

  42. K. Erdener, B.U. Omer, S. Dursun, Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur. Polym. J. 38, 2133–2141 (2000)

    Google Scholar 

  43. A. Pourjavadi, A.M. Harzandi, H. Hosseinzaden, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 40, 1363–1370 (2004)

    Article  Google Scholar 

  44. K. Sharma, B.S. Kaith, V. Kumar, S. Kalia, V. Kumar, H.C. Swart, Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232-234, 45–55 (2014)

    Article  Google Scholar 

  45. P. Deepika, K.S. Avjeet, I.S. Michael, Recyclability of poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid Polym. Sci. 291, 1795–1802 (2013)

    Article  Google Scholar 

  46. G. Azzulia, R. Barbucci, M. Benvenuti, P. Ferriti, M. Nocentini, Chemical and biological evaluation of heparinized poly(amido-amine) grafted polyurethane. Biomaterials 8, 61–66 (1987)

    Article  Google Scholar 

  47. M.C. Tanzi, C. Barozzi, G. Teighi, R. Ferrara, G. Casini, F. Tempesti, Heparinizable graft copolymers from chlorosulphonated polyethylene with poly(amido-amine) segments. Biomaterials 6, 273–276 (1985)

    Article  Google Scholar 

  48. K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanable, N. Nakabayashi, Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Res. 26 1543–1552 (1992)

  49. T. Ueda, A. Watanable, K. Ishihara, N. Nakabayashi, J. Biomaterial Sci, Polym. Ed. 3, 185–194 (1991)

    Google Scholar 

  50. M. Mrlik, P. Sobolciak, I. Krupa, P. Kasak, Light-controllable viscoelastic properties of a photolabile carboxybetaine ester-based polymer with mucus and cellulose sulfate. Emerg. Mater. 1, 35–45 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Mr. Mukesh Roy, Asst. Professor, Amity University, to carry out contact angle measurement and their help in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishabha Malviya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, R., Sharma, P.K. & Dubey, S.K. Microwave-assisted preparation of biodegradable, hemocompatible, and antimicrobial neem gum–grafted poly (acrylamide) hydrogel using (3)2 factorial design. emergent mater. 2, 95–112 (2019). https://doi.org/10.1007/s42247-019-00022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00022-y

Keywords

Navigation