Skip to main content
Log in

Nano-Al (OH)3 and Mg (OH)2 as flame retardants for polypropylene used on wires and cables

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

While materials sustainability is mostly considered in terms of their long-time aging, fires are more important—while polymers are flammable. We have developed flame retardants (FRs) for polypropylene (PP) with varied FR concentrations since PP is a very widely used polymer. Stearic acid (SA) has been added to increase filler–matrix interactions and filler dispersion in the matrix. Effects of filler types, particle size, and their concentrations on fire resistibility of different composite samples have been determined via limiting oxygen index tests and burning times. As expected, the oxygen index increases with increasing concentration of either FR. The highest value of the index is seen for 10 wt% 50 nm Al (OH)3 sample. Mixing the two hydroxides does not provide a synergy effect. The longest burning time is seen for 5 wt% 50 nm Al (OH)3 + 7 wt% SA, longer than the time for pure PP sample by 137%. Neat PP has a relatively high dynamic friction value, while addition of 5% SA results in the lowest friction value of all. The highest tensile modulus is seen for PP with 7.5 wt% 15 nm Al (OH)3 particle addition. Thermogravimetric analysis shows high thermal stability for PP with 5% each of Al (OH)3 and Mg (OH)2. Scanning electron microscopy shows that the surfaces of Al (OH)3-containing samples are slightly rougher than those with Mg (OH)2. Energy dispersive X-ray spectroscopy shows uniform distribution of both Al and Mg atoms in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. W.-Y. Chiang, C.H. Hu, Eur. Polym. J. 32, 385 (1996), The improvements in flame retardance and mechanical properties of polypropylene/FR blends by acrylic acid graft copolymerization, 390

  2. Q.T. Shubhra, A.K.M.M. Alam, M.A. Quaiyyum, J. Thermo, Compos. Mater 26, 362 (2011)

    Google Scholar 

  3. M. Bugajny, M. Le Bras, S. Bourbigot, F. Poutch, J.-M. Lefevbre, Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 1: fire retardancy of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends. J. Fire Sci. 17, 494–513 (1999)

    Article  Google Scholar 

  4. L. Techawinyutham, A. Frick, S. Siengchin, Adv. Mech. Eng 8 (2016). https://doi.org/10.1177/1687814016645446

  5. L. Sun, Q. Wu, Y. Xie, R. Cueto, S. Lee, Q. Wang, J. Fire Sci. 34, 228 (2016)

    Article  Google Scholar 

  6. B.M. Braune, M.L. Mallory, H.G. Gilchrist, R.J. Letcher, K.G. Drouillard, Levels and trends of organochlorines and brominated flame retardants in Ivory Gull eggs from the Canadian Arctic, 1976 to 2004. Sci. Total Environ. 378, 403–417 (2007)

    Article  Google Scholar 

  7. K. Langfeld, A. Wilke, A. Sut, S. Greiser, B. Ulmer, V. Andrievici, P. Limbach, M. Bastian, B. Schartel, Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations. J. Fire Sci. 33, 157–177 (2015)

    Article  Google Scholar 

  8. S.K. Li, Inorg. Chem. Ind 35, 3 (2003)

    Google Scholar 

  9. W.C.J. Zuiderduin, C. Westzaan, J. Huetink et al.: Polym 44, 261 (2003)

    Google Scholar 

  10. K. Kim, J.L. White, S. Shim, et al., Effects of stearic acid coated talc, CaCO3, and mixed talc/CaCO3 particles on the rheological properties of polypropylene compounds. J. Appl. Polym. Sci. 93, 2105–2113 (2004)

    Article  Google Scholar 

  11. M. Avella, S. Cosco, M.L.D. Lorenzo, et al., Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur. Polym. J. 42, 1548–1557 (2006)

    Article  Google Scholar 

  12. N. Kiattipanich, N. Kreua-Ongarjnukool, T. Pongpayoon, et al., J. Polym. Eng. 27, 411 (2007)

    Article  Google Scholar 

  13. C.D. Angel, A.B. Morales, F.N. Pardo, T. Lozano, P.G. Lafleur, S.S.G.M. Colunga, E.R. Vargas, S. Alonso, R. Zitzumbo, J. Appl. Polym. Sci. 132, 42264 (2015)

    Google Scholar 

  14. US ASTM Standard No. D2862

  15. US ASTM Standard No. D882

  16. W. Brostow, J.-L. Deborde, M. Jaklewicz, P. Olszynski, J. Mater. Ed. 25, 119 (2003)

    Google Scholar 

  17. W. Brostow, V. Kovacevic, D. Vrsaljko, J. Whitworth, J. Mater. Ed. 32, 273 (2010)

    Google Scholar 

  18. W. Brostow, H.E. Hagg Lobland, N. Hnatchuk, J.M. Perez, Nano 7, 66 (2017)

    Google Scholar 

  19. W. Brostow, H.E. Hagg Lobland: Materials: introduction and applications, John Wiley & Sons (2017)

  20. M. Barczewski, D. Chmielewska, M. Dobrzynska-Mizera, B. Dudziec, T. Sterzynski, Thermal stability and flammability of polypropylene-silsesquioxane nanocomposites. Internat. J. Polym. Anal. & Char. 19, 500–509 (2014)

    Article  Google Scholar 

  21. G. Martinez-Barrera, F. Ureña-Nuñez, O. Gencel, W. Brostow, Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Composites A 42, 567–572 (2011)

    Article  Google Scholar 

  22. O. Gencel, C. Ozel, W. Brostow, G. Martinez-Barrera, Mechanical properties of self-compacting concrete reinforced with polypropylene fibres. Mater. Res. Innovat. 15, 216–225 (2011)

    Article  Google Scholar 

  23. J. Andrzejewski, M. Szostak, M. Barczewski, J. Krasucki, T. Sterzynski, J. Appl. Polym. Sci. 131, 41180 (2014)

    Article  Google Scholar 

  24. J. Karger-Kocsis, editor: Polypropylene structure, blends and composites, volumes 1 - 3, Springer Science (2012)

  25. A. Wolska, M. Gozdzikiewicz, J. Ryszkowska, Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J. Mater. Sci. 47, 5627–5634 (2012)

    Article  Google Scholar 

  26. C.P.R. Hoppel, R.N. Pangborn, R.W. Thomson, Damage accumulation during multiple stress level fatigue of short-glass-fiber reinforced styrene-maleic anhydride. J. Thermoplast. Compos. Mater. 14, 84–94 (2001)

    Article  Google Scholar 

  27. D.R. Kelsey, B.M. Scardino, J.S. Grebowicz, H.H. Huah, High impact, amorphous terephthalate copolyesters of rigid 2,2,4,4-tetramethyl-1,3-cyclobutanediol with flexible diols. Macromolecules 33, 5810–5818 (2000)

    Article  Google Scholar 

  28. C. Velasco-Santos, A.L. Martinez-Hernandez, F.T. Fisher, R. Ruoff, V.M. Castaño, Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15, 4470–4475 (2003)

    Article  Google Scholar 

  29. C. Zeppa, F. Gouanvé, E. Espuche, Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. J. Appl. Polym. Sci. 112, 2044–2056 (2009)

    Article  Google Scholar 

  30. W. Brostow, H.E. Hagg Lobland, S. Lohse, A.T. Osmanson, R. Ravi, S. Sayana, V. Shi, A. Singh, Proc. BALTTRIB Conf. 9, 57 (2017)

    Google Scholar 

  31. R. Levinskas, R. Kėželis, K. Brinkienė, V. Grigaitienė, V. Valinčius, I. Lukošiūtė, Ž. Kavaliauskas, A. Baltušnikas, High temperature ablation of composite material under plasma jet impact. Mater. Sci. Medžiagotyra 17, 423–427 (2011). https://doi.org/10.5755/j01.ms.17.4.781

    Google Scholar 

  32. R. Levinskas, I. Lukosiute, A. Baltusnikas, A. Kuoga, A. Luobikiene, J. Rodriguez, I. Cañadas, W. Brostow, Modified xonotlite–type calcium silicate hydrate slabs for fire doors. J. Fire Sci. 36, 83–96 (2018)

    Article  Google Scholar 

  33. J. Broda, C. Slusarczyk, J. Fabia, A. Demsar, Formation and properties of polypropylene/stearic acid composite fibers. Textile Res. J. 86, 64–71 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Some financial as well as technical support for this project has been provided by the Encore Wire Corp., McKinney, TX, and are gratefully acknowledged. Several colleagues have provided useful comments on our work and on this manuscript including Ray H. Pahler and Andrew Hull. Anonymous reviewer comments have been taken into consideration and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brostow, W., Lohse, S., Lu, X. et al. Nano-Al (OH)3 and Mg (OH)2 as flame retardants for polypropylene used on wires and cables. emergent mater. 2, 23–34 (2019). https://doi.org/10.1007/s42247-018-0019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0019-8

Keywords

Navigation