Skip to main content

Advertisement

Log in

Pollen fillers for reinforcing and strengthening of epoxy composites

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Pollen grains have the potential to be effective plant-based biorenewable fillers in polymer matrices due to their high modulus, strength, chemical stability, and unique nanoscale architectures. In this work, we present evidence for the effectiveness of pollen as a reinforcing filler in epoxy matrices, characterized as a function of pollen loading and surface treatment. Composites prepared with unmodified native defatted ragweed pollen (D) displayed decreased mechanical properties and increasing glass transition temperatures (Tg) with increasing pollen loading. A soft interphase was observed to form around native pollen that is likely due to incompletely cured epoxy, resulting in decreased mechanical properties. However, pollen treated via a common base-acid (BA) surface preparation was a load-bearing, toughening filler in epoxy composites, displaying simultaneously increased tensile strength (by 47%) and strain at break (by 70%), improving interfacial morphology (absence of soft interphase), and increasing Tg at 10 wt% pollen loading. Elastic modulus improves by 14% with 10 wt% BA pollen loading, and fitting of the modulus with the Halpin-Tsai and Counto models results in an estimated pollen exine modulus of 8 GPa, the first reported pollen modulus measurement from composite studies. Improvements in mechanical properties in BA pollen versus D pollen likely result due to crosslinks with the epoxy matrix due to the presence of protic functional groups (hydroxyls or carboxyls) on the BA surface. BA-treated ragweed pollen shows promise as a toughening filler for imparting higher strength to polymers without increasing mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B 39, 933–961 (2008)

    Article  Google Scholar 

  2. G. Wypych, Handbook of fillers, 3 edn (ChemTec, 2010)

  3. B.J. Ash, D.F. Rogers, C.J. Wiegand, L.S. Schadler, R.W. Siegel, B.C. Benicewicz, T. Apple, Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites. Polym. Compos. 23, 1014–1025 (2002)

    Article  CAS  Google Scholar 

  4. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  CAS  Google Scholar 

  5. S. Barrier, Physical and chemical properties of sporopollenin exine particles, Ph.D. Thesis, University of Hull, (2008)

  6. O.O. Fadiran, J.C. Meredith, Surface treated pollen performance as a renewable reinforcing filler for poly(vinyl acetate). J. Mater. Chem. A 2, 17031–17040 (2014)

    Article  CAS  Google Scholar 

  7. J.H. Lee, B.M. Suttle, H.J. Kim, J.C. Meredith, Pollen: a novel, biorenewable filler for polymer composites. Macromol. Mater. Eng. 296, 1055–1062 (2011)

    Article  CAS  Google Scholar 

  8. T. Liu, Z. Zhang, Mechanical properties of desiccated ragweed pollen grains determined by micromanipulation and theoretical modelling. Biotechnol. Bioeng. 85, 770–775 (2004)

    Article  CAS  Google Scholar 

  9. B. Goodwin, I. Gomez, Y. Fang, J.C. Meredith, K.J. Sandhage, Conversion of pollen particles into three-dimensional ceramic replicas tailored for multimodal adhesion. Chem. Mater. 25, 4529–4536 (2013)

    Article  Google Scholar 

  10. W.B. Goodwin, D. Shin, D. Sabo, S. Hwang, Z.J. Zhang, J.C. Meredith, K.H. Sandhage, Bioinspiration & Biomimetics 12, 066009 (2017)

    Article  Google Scholar 

  11. Y. Wang, Z.M. Liu, B.X. Han, Y. Huang, G.Y. Yang, Carbon microspheres with supported silver nanoparticles prepared from pollen grains. Langmuir 21, 10846–10849 (2005)

    Article  CAS  Google Scholar 

  12. Y. Wang, Z.M. Liu, B.X. Han, Z.Y. Sun, J.M. Du, J.L. Zhang, T. Jiang, W.Z. Wu, Z.J. Miao, Chemical communications, 2948–2950 (2005)

    Google Scholar 

  13. H.S. Lin, M.C. Allen, J. Wu, B.M. DeGlee, D. Shin, Y. Cai, K.H. Sandhage, D.D. Deheyn, J.C. Meredith, Chem Mater 27, 7321–7330 (2015)

    Article  CAS  Google Scholar 

  14. S.U. Atwe, Y.Z. Ma, H.S. Gill, Pollen grains for oral vaccination. J. Control. Release 194, 45–52 (2014)

    Article  CAS  Google Scholar 

  15. I. Sargin, L. Akyuz, M. Kaya, G. Tan, T. Ceter, K. Yildirim, S. Ertosun, G.H. Aydin, M. Topal, Controlled release and anti-proliferative effect of imatinib mesylate loaded sporopollenin microcapsules extracted from pollens of Betula pendula. Int. J. Biol. Macromol. 105, 749–756 (2017)

    Article  CAS  Google Scholar 

  16. P. Piffanelli, J.H.E. Ross, D.J. Murphy, Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 11, 65–80 (1998)

    Article  CAS  Google Scholar 

  17. R. Wiermann, S. Gubatz, Pollen wall and sporopollenin. Int. Rev. Cytol. 140, 35–72 (1992)

    Article  CAS  Google Scholar 

  18. S. Blackmore, A.H. Wortley, J.J. Skvarla, J.R. Rowley, Pollen wall development in flowering plants. New Phytol. 174, 483–498 (2007)

    Article  CAS  Google Scholar 

  19. E. Dominguez, J.A. Mercado, M.A. Quesada, A. Heredia, Sex. Plant Reprod. 12, 171–178 (1999)

    Article  CAS  Google Scholar 

  20. E.M. Petrie, Epoxy adhesive formulations (McGraw-Hill, 2006)

  21. H. Lin, I. Gomez, J.C. Meredith, Pollenkitt wetting mechanism enables species-specific tunable pollen adhesion. Langmuir 29, 3012–3023 (2013)

    Article  CAS  Google Scholar 

  22. B.J.R. Thio, J.H. Lee, J.C. Meredith, Characterization of ragweed pollen adhesion to polyamides and polystyrene using atomic force microscopy. Environ. Sci Technol. 43, 4308–4313 (2009)

    Article  CAS  Google Scholar 

  23. F. Zetzsche, H. Vicari, Untersuchungen über die Membran der Sporen und Pollen II. Lycopodium clavatum L. 2. Helv Chim Acta 14, 58–78 (1931)

    Article  CAS  Google Scholar 

  24. J.L. Sormana, S. Chattopadhyay, J.C. Meredith, Rev. Sci. Instrum. 76 (2005)

  25. E. Dominguez, J.A. Mercado, M.A. Quesada, A. Heredia, Isolation of intact pollen exine using anhydrous hydrogen fluoride. Grana 37, 93–96 (1998)

    Article  Google Scholar 

  26. G. Shaw, D.C. Apperley, 13C-NMR spectra ofLycopodium clavatumsporopollenin and oxidatively polymerised β-carotene. Grana 35, 125–127 (1996)

    Article  Google Scholar 

  27. J.C.C. Maria González González, J.C. Cabanelas, J. Baselga, in Infrared spectroscopy - materials science, engineering and technology, ed. by T. Theophile. (InTech, 2012), pp. 261–284

  28. V. Cecen, Y. Seki, M. Sarikanat, I.H. Tavman, FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. J. Appl. Polym. Sci. 108, 2163–2170 (2008)

    Article  CAS  Google Scholar 

  29. S.H. Xu, N. Girouard, G. Schueneman, M.L. Shofner, J.C. Meredith, Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589–6598 (2013)

    Article  CAS  Google Scholar 

  30. J.I. Yang, Part I: synthesis of aromatic polyketones via soluble precursors derived from bis(A-amininitrile)s Part II: modifications of epoxy resins with functional hyperbranched poly(areylene ester)s, Ph.D. Thesis, Virginia Tech, (1998)

  31. M. Amato, F. Barbato, P. Morrica, F. Quaglia, M.I. La Rotonda, Helv Chim Acta 83, 2836–2847 (2000)

    Article  CAS  Google Scholar 

  32. J.Y.C. Ma, J.K.H. Ma, K.C. Weber, Fluorescence studies of the binding of amphiphilic amines with phospholipids. J. Lipid Res. 26, 735–744 (1985)

    CAS  Google Scholar 

  33. B. Tadolini, G. Hakim, Ital. J. Biochem. 37, A184–A185 (1988)

    Google Scholar 

  34. J.C. Halpin, J.L. Kardos, Polym. Eng. Sci. 16, 344–352 (1976)

    Article  CAS  Google Scholar 

  35. S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990)

    Article  CAS  Google Scholar 

  36. U.J. Counto, The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag. Concr. Res. 16, 129–138 (1964)

    Article  Google Scholar 

  37. H.B. Lu, S. Nutt, Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36, 4010–4016 (2003)

    Article  CAS  Google Scholar 

  38. A. Yim, R.S. Chahal, L.E. Stpierre, The effect of polymer—filler interaction energy on the T′g of filled polymers. J. Colloid Interface Sci. 43, 583–590 (1973)

    Article  CAS  Google Scholar 

  39. A. Yasmin, J.L. Abot, I.M. Daniel, Processing of clay/epoxy nanocomposites by shear mixing. Scr. Mater. 49, 81–86 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank the Renewable Bioproducts Institute (Georgia Institute of Technology) and the Air Force Office of Scientific Research (Grant # FA9550-10-1-0555) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carson Meredith.

Electronic supplementary material

ESM 1

Electronic supplementary material is available, which includes SEM images (pollen recovered from solution and fracture surfaces), photographs (color changes in amines and epoxy films), uniaxial mechanical properties and modeling, AFM force modulation images of fracture surfaces. (DOCX 7898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadiran, O.O., Girouard, N. & Meredith, J.C. Pollen fillers for reinforcing and strengthening of epoxy composites. emergent mater. 1, 95–103 (2018). https://doi.org/10.1007/s42247-018-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0009-x

Keywords

Navigation