Skip to main content
Log in

When joggers meet robots: the past, present, and future of research on humanoid robots

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Spawned by fast-paced progress in new materials and integrate circuit technology, the past two decades have witnessed tremendous development of humanoid robots for both scientific and commercial purposes, e.g. emergency response and daily life assistant. At the root of this trend are the increasing research interests and cooperation opportunities across different laboratories and countries. The application-driven requirements of high effectiveness and reliability of humanoid robots led intensive research and development in humanoid locomotion and control theories. In spite of the progress in the area, challenges such as unnatural locomotion control, inefficient multi-motion planning, and relatively slow disturbances recovery set further requirements for the next generation of humanoid robots. Therefore, the purpose of this work is to review the current development of highly representative bipedal humanoid robots and discuss the potential to move the ideas and models forward from laboratory settings into the real world. To this end, we also review the current clinical understanding of the walking and running dynamics to make the robot more human-like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong E (2001) Lieh-Tzu: a taoist guide to practical living. Shambhala Publications, Boulder

    Google Scholar 

  2. Kato I (1973) Development of WABOT 1. Biomechanism 2:173–214

    Article  Google Scholar 

  3. Neumann DA (2010) Kinesiology of the musculoskeletal system: foundations for rehabilitation. Elsevier, Amsterdam

    Google Scholar 

  4. Vaughan CL (2003) Theories of bipedal walking: an odyssey. J Biomech 36(4):513–523

    Article  Google Scholar 

  5. Perry J, Burnfield J (2010) Gait analysis: normal and pathological function. SLACK Incorporated, London

    Google Scholar 

  6. Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Jt Surg 46(2):335–360

    Article  Google Scholar 

  7. Service P, Department PT (2001) Observational gait analysis. Los Amigos Research and Education Institute Inc, Rancho Los Amigos National Rehabilitation Center, Los Amgeles

    Google Scholar 

  8. Elftman H (1954) The functional structure of the lower limb. Human limbs and their substitutes. McGraw-Hill, New York, pp 411–436

    Google Scholar 

  9. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New York

    Book  Google Scholar 

  10. Ralston HJ (1965) Effects of immobilization of various body segments on the energy cost of human locomotion. In: The 2nd international congress on ergonomics, pp 53–60

  11. Nordin M, Frankel VH (2001) Basic biomechanics of the musculoskeletal system. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  12. Peeters K, Natsakis T, Burg J, Spaepen P, Jonkers I, Dereymaeker G, Vander Sloten J (2013) An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator. Proc Inst Mech Eng Part H J Eng Med 227(9):955–967

    Article  Google Scholar 

  13. Baxter JR, Sturnick DR, Demetracopoulos CA, Ellis SJ, Deland JT (2016) Cadaveric gait simulation reproduces foot and ankle kinematics from population-specific inputs. J Orthop Res 34(9):1663–1668

    Article  Google Scholar 

  14. Sharkey NA, Hamel AJ (1998) A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation. Clin Biomech 13(6):420–433

    Article  Google Scholar 

  15. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  16. Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17(1):187–230

    Google Scholar 

  17. Bhargava LJ, Pandy MG, Anderson FC (2004) A phenomenological model for estimating metabolic energy consumption in muscle contraction. J Biomech 37(1):81–88

    Article  Google Scholar 

  18. Kry PG, Pai DK (2006) Interaction capture and synthesis. ACM Trans Gr 25(3):872–880

    Article  Google Scholar 

  19. Menegaldo LL, de Toledo FA, Weber HI (2004) Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J Biomech 37(9):1447–1453

    Article  Google Scholar 

  20. Pratt GA, Williamson MM (1995) Series elastic actuators. In: 1995 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, vol 1, pp 399–406

  21. Paine N, Oh S, Sentis L (2014) Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans Mechatron 19(3):1080–1091

    Article  Google Scholar 

  22. Paluska DJ (2000) Design of a humanoid piped for walking research. Master’s thesis, Massachusetts Institute of Technology

  23. Pratt J, Krupp B (2008) Design of a bipedal walking robot. In: Unmanned systems technology X, vol 6962. International Society for Optics and Photonics, p 69621F

  24. Pratt J, Koolen T, De Boer T, Rebula J, Cotton S, Carff J, Johnson M, Neuhaus P (2012) Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int J Robot Res 31(10):1117–1133

    Article  Google Scholar 

  25. Kim D, Zhao Y, Thomas G, Fernandez BR, Sentis L (2016) Stabilizing series-elastic point-foot bipeds using whole-body operational space control. IEEE Trans Robot 32(6):1362–1379

    Article  Google Scholar 

  26. Slovich M, Paine N, Kemper K, Metzger A, Edsinger A, Weber J, Sentis L (2012) HUME: a bipedal robot for human-centered hyper-agility. In: Dynamic walking conference, vol 4, p 2

  27. Radford NA, Strawser P, Hambuchen K, Mehling JS, Verdeyen WK, Donnan AS, Holley J, Sanchez J, Nguyen V, Bridgwater L et al (2015) Valkyrie: NASA’s first bipedal humanoid robot. J Field Robot 32(3):397–419

    Article  Google Scholar 

  28. Ramezani A, Grizzle JW (2012) ATRIAS 2.0, a new 3D bipedal robotic walker and runner. In: Adaptive mobile robotics. World Scientific, pp 467–474

  29. Tsagarakis NG, Morfey S, Cerda GM, Zhibin L, Caldwell DG (2013) COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In: 2013 IEEE international conference on robotics and automation (ICRA), IEEE, pp 673–678

  30. Tsagarakis NG, Caldwell DG, Negrello F, Choi W, Baccelliere L, Loc V, Noorden J, Muratore L, Margan A, Cardellino A et al (2017) WALK-MAN: a high-performance humanoid platform for realistic environments. J Field Robot 34(7):1225–1259

    Article  Google Scholar 

  31. Negrello F, Garabini M, Catalano MG, Kryczka P, Choi W, Caldwell DG, Bicchi A, Tsagarakis NG (2016) WALK-MAN humanoid lower body design optimization for enhanced physical performance. In: 2016 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1817–1824

  32. Metta G, Sandini G, Vernon D, Natale L, Nori F (2008) The iCub humanoid robot: an open platform for research in embodied cognition. In: the 8th Workshop on performance metrics for intelligent systems. ACM, pp 50–56

  33. Stephens BJ, Atkeson CG (2010) Dynamic balance force control for compliant humanoid robots. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 1248–1255

  34. Feng S, Whitman E, Xinjilefu X, Atkeson CG (2014) Optimization based full body control for the Atlas robot. In: 2014 IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 120–127

  35. Koolen T, Smith J, Thomas G, Bertrand S, Carff J, Mertins N, Stephen D, Abeles P, Englsberger J, Mccrory S, et al (2013) Summary of team IHMC’s virtual robotics challenge entry. In: 2013 IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 307–314

  36. Kim JY, Atkeson CG, Hodgins JK, Bentivegna DC, Cho SJ (2007) Online gain switching algorithm for joint position control of a hydraulic humanoid robot. In: 2007 IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 13–18

  37. Wikipedia, the free encyclopedia (2018) Atlas (robot). https://en.wikipedia.org/wiki/Atlas_(robot). Accessed 25 Mar 2019

  38. Todd DJ (2013) Walking machines: an introduction to legged robots. Springer, NewYork

    Google Scholar 

  39. Li Y, Li B, Ruan J, Rong X (2011) Research of mammal bionic quadruped robots: a review. In: 2011 IEEE international conference on robotics, automation and mechatronics (RAM), IEEE, pp 166–171

  40. Michael K (2012) Meet Boston Dynamics’ LS3-The latest robotic war machine

  41. Semini C, Goldsmith J, Manfredi D, Calignano F, Ambrosio EP, Pakkanen J, Caldwell DG (2015) Additive manufacturing for agile legged robots with hydraulic actuation. In: 2015 IEEE international conference on advanced robotics (ICAR), IEEE, pp 123–129

  42. Hutter M, Gehring C, Bloesch M, Hoepflinger MA, Remy CD, Siegwart R (2012) StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Adaptive mobile robotics. World Scientific, pp 483–490

  43. Fankhauser P, Hutter M (2018) ANYmal: a unique quadruped robot conquering harsh environments. Res Featur 126:54–57

    Google Scholar 

  44. Semini C, Barasuol V, Goldsmith J, Frigerio M, Focchi M, Gao Y, Caldwell DG (2017) Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max. IEEE/ASME Trans Mechatron 22(2):635–646

    Article  Google Scholar 

  45. Vukobratović M, Borovac B (2004) Zero-moment point—thirty five years of its life. Int J Humanoid Robot 1(01):157–173

    Article  Google Scholar 

  46. Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans Syst Man Cybern Part A Syst Hum 34(5):630–637

    Article  Google Scholar 

  47. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by using preview control of zero-moment point. In: 2003 IEEE international conference on robotics and automation (ICRA), vol 3, pp 1620–1626

  48. Wieber PB (2006) Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 2006 IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 137–142

  49. Nishiwaki K, Kagami S (2010) Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking. In: 2010 IEEE international conference on robotics and automation (ICRA), IEEE, pp 4230–4236

  50. Feng S, Xinjilefu X, Huang W, Atkeson CG (2013) 3D walking based on online optimization. In: 2013 IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 21–27

  51. McGeer T (1990) Passive walking with knees. In: 1990 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1640–1645

  52. Tan F, Fu C, Chen K (2010) Biped blind walking on changing slope with reflex control system. In: 2010 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1709–1714

  53. Griffin RJ, Wiedebach G, Bertrand S, Leonessa A, Pratt J (2017) Walking stabilization using step timing and location adjustment on the humanoid robot, Atlas. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 667–673

  54. Pratt J, Dilworth P, Pratt G (1997) Virtual model control of a bipedal walking robot. In: 1997 IEEE international conference on robotics and automation (ICRA), IEEE, vol 1, pp 193–198

  55. Hopkins MA, Ressler SA, Lahr DF, Leonessa A, Hong DW (2015) Embedded joint-space control of a series elastic humanoid. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 3358–3365

  56. Lohman EB III, Sackiriyas KSB, Swen RW (2011) A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Phys Ther Sport 12(4):151–163

    Article  Google Scholar 

  57. Hasegawa H, Yamauchi T, Kraemer WJ (2007) Foot strike patterns of runners at the 15-km point during an elite-level half marathon. J Strength Cond Res 21(3):888

    Google Scholar 

  58. Liu GHZ, Chen MZQ, Chen Y, Huang L (2017) When joggers meet robots: a preliminary study on foot strike patterns. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 3971–3976

  59. Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA, Lieberman DE (2012) Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc 44(7):1325–34

    Article  Google Scholar 

  60. Milner CE, Hamill J, Davis I (2007) Are knee mechanics during early stance related to tibial stress fracture in runners? Clin Biomech 22(6):697–703

    Article  Google Scholar 

  61. Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS (2008) Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech 41(6):1160–1165

    Article  Google Scholar 

  62. Pohl MB, Hamill J, Davis IS (2009) Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clin J Sport Med 19(5):372–376

    Article  Google Scholar 

  63. Williams DS III, McClay IS, Manal KT (2000) Lower extremity mechanics in runners with a converted forefoot strike pattern. J Appl Biomech 16(2):210–218

    Article  Google Scholar 

  64. Englsberger J, Ott C, Albu-Schäffer A (2013) Three-dimensional bipedal walking control using divergent component of motion. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 2600–2607

  65. Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of Honda humanoid robot. In: 1998 IEEE international conference on robotics and automation (ICRA), IEEE, vol 2, pp 1321–1326

  66. Ota T, Ohara K, Ichikawa A, Kobayashi T, Hasegawa Y, Fukuda T (2016) Modeling of the high-speed running humanoid robot. In: 2016 International symposium on micro-nanomechatronics and human science (MHS), IEEE, pp 1–3

  67. Zhang M, Xie SQ, Li X, Zhu G, Meng W, Huang X, Veale AJ (2018) Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans Ind Electron 65(2):1398–1407

    Article  Google Scholar 

  68. Zhang M, Davies TC, Xie S (2013) Effectiveness of robot-assisted therapy on ankle rehabilitation—a systematic review. J Neuroeng Rehabil 10(1):30

    Article  Google Scholar 

  69. Park YL, Chen BR, Pérez-Arancibia NO, Young D, Stirling L, Wood RJ, Goldfield EC, Nagpal R (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir Biom 9(1):016007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Research Grants Committee, Hong Kong, through the General Research Fund under Grant 17251716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Q. Chen.

Ethics declarations

Conflict of interest

George H. Z. Liu, Michael Z. Q. Chen, and Yonghua Chen declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G.H.Z., Chen, M.Z.Q. & Chen, Y. When joggers meet robots: the past, present, and future of research on humanoid robots. Bio-des. Manuf. 2, 108–118 (2019). https://doi.org/10.1007/s42242-019-00038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00038-7

Keywords

Navigation