Skip to main content
Log in

A Soft Bionic Gripper with Variable Effective Length

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping performance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper’s performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm – 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipson H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics, 2014, 1, 21–27.

    Article  Google Scholar 

  2. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521, 467–475.

    Article  Google Scholar 

  3. Kim S, Laschi C, Trimmer B. Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 2013, 31, 23–30.

    Article  Google Scholar 

  4. Ilievski F, Mazzeo A D, Shepherd R F, Chen X, Whitesides G M. Soft robotics for chemists. Angewandte Chemie, 2011, 123, 1930–1935.

    Article  Google Scholar 

  5. Shepherd R F, Stokes A A, Freake J, Barber J, Snyder P W, Mazzeo A D, Cadematiri L, Morin S A, Whitesides G M. Using explosions to power a soft robot. Angewandte Chemie- International Edition, 2013, 52, 2892–2896.

    Article  Google Scholar 

  6. Polygerinos P, Wang Z, Overvelde J T B, Galloway K C, Wood R J, Bertoldi K,Walsh C J. Modeling of soft fiber- reinforced bending actuators. IEEE Transactions on Robotics, 2015, 31, 778–789.

    Article  Google Scholar 

  7. Connolly F, Walsh C J, Bertoldi K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 51.

    Article  Google Scholar 

  8. Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin M R, Lipson H, Jaeger H M. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 2010, 107, 18809–18814.

    Article  Google Scholar 

  9. Long J H, Combes S, Nawroth J, Hale M, Lauder G, Swartz S, Quinn R, Chiel H. How does soft robotics drive research in animal locomotion?. Soft Robotics, 2014, 1, 161–168.

    Article  Google Scholar 

  10. Bartlett N W, Tolley M T, Overvelde J T, Weaver J C, Mosadegh B, Bertoldi K Whitesides G M, Wood R J. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349, 161–165.

    Article  Google Scholar 

  11. Wehner M, Truby R L, Fitzgerald D J, Mosadegh B, Whitesides G M, Lewis J A, Wood R J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451.

    Article  Google Scholar 

  12. Shepherd R F, Ilievski F, Choi W, Morin S A, Stokes A A, Mazzeo A D, Chen X, Wang M, Whitesides G M. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20400–20403.

    Article  Google Scholar 

  13. Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M. Camouflage and display for soft machines. Science, 2012, 337, 828–832.

    Article  Google Scholar 

  14. Shepherd R F, Stokes A A, Nunes R M, Whitesides G M. Soft machines that are resistant to puncture and that self seal. Advanced Materials, 2013, 25, 6709–6713.

    Article  Google Scholar 

  15. Cho K J, Koh J S, Kim S, Chu W S, Hong Y, Ahn S H. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing, 2009, 10, 171–181.

    Article  Google Scholar 

  16. Stokes A A, Shepherd R F, Morin S A, Ilievski F, Whitesides G M. A hybrid combining hard and soft robots. Soft Robotics, 2014, 1, 70–74.

    Article  Google Scholar 

  17. Connolly F, Polygerinos P, Walsh C J, Bertoldi K. Mechanical programming of soft actuators by varying fiber angle. Soft Robotics, 2015, 2, 26–32.

    Article  Google Scholar 

  18. Odhner L U, Jentoft L P, Claffee M R, Corson N, Tenzer Y, Ma R R, Buehler M, Kohout R, Howe R D, Dollar A M. A compliant, underactuated hand for robust manipulation. International Journal of Robotics Research, 2014, 33, 736–752.

    Article  Google Scholar 

  19. Stuart H S, Wang S, Gardineer B, Christensen D L, Aukes D M, Cutkosky M. A compliant underactuated hand with the suction flow for underwater mobile manipulation. Robotics and Automation (ICRA), 2014 IEEE International Conference on, Hong Kong, China, 2014, 6691–6697.

    Google Scholar 

  20. Mosadegh B, Polygerinos P, Keplinger C, Wennstedt S, Shepherd R F, Gupta U, Shim J, Bertoldi K, Walsh C J, Whitesides G M. Soft robotics: Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24, 2163–2170.

    Article  Google Scholar 

  21. Girard A, Bigué J P L, O’Brien B M, Gisby T A, Anderson I A, Plante J. Soft two-degree-of-freedom dielectric elastomer position sensor exhibiting linear behavior. IEEE/ASME Transactions on Mechatronics, 2015, 20, 105–114.

    Article  Google Scholar 

  22. Shen Q, Wang T, Liang J, Wen L. Hydrodynamic performance of a biomimetic robotic swimmer actuated by 02ionic polymer–metal composite. Smart Materials & Structures, 2013, 22, 075035.

    Article  Google Scholar 

  23. Park Y L, Chen B R, Pérezarancibia N O, Young D, Stirling L, Wood R J, Goldfield E C, Nagpal R. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspiration & Biomimetics, 2014, 9, 16007–16023.

    Article  Google Scholar 

  24. Ding Y, Galiana I, Asbeck A, Quinlivan B, Rossi S M M D, Walsh C. Multi-joint actuation platform for lower extremity soft exosuits. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, 1327–1334.

    Chapter  Google Scholar 

  25. Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi C, Dario P. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 2011, 6, 525–531.

    Article  Google Scholar 

  26. Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration & Biomimetics, 2013, 8, 653–668.

    Article  Google Scholar 

  27. Homberg B S, Katzschmann R K, Dogar M R, Rus D. Haptic identification of objects using a modular soft robotic gripper. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, 1698–1705.

    Chapter  Google Scholar 

  28. Deimel R, Brock O. A novel type of complaint, underactuated robotic hand for dexterous grasping. International Journal of Robotics Research, 2015, 35, 161–185.

    Article  Google Scholar 

  29. Wang B, McDaid A, Giffney T, Biglariabhari M, Aw K C. Design, modeling and simulation of soft grippers using new bimorph pneumatic bending actuators. Cogent Engineering, 2017, 4, 1285482.

    Google Scholar 

  30. Hao Y, Wang T, Ren Z, Gong Z, Wang H, Yang X, Guan S, Wen L. Modeling and experiments of a soft robotic gripper in amphibious environments. International Journal of Advanced Robotic Systems, 2017, 14, 1729881417707148.

    Article  Google Scholar 

  31. Shuichi W, Koichi S, Keiko O. Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube. Advanced Robotics, 2011, 25, 1311–1330.

    Article  Google Scholar 

  32. Lessing J A, Knopf R R, Mclellan N. Soft Robotic Actuators Utilizing Asymmetric Surfaces, U S Patent, No. US20160114482 A1, 28 Apr. 2016.

    Google Scholar 

  33. Hong K Y, Hui Y N, Yeow C H. High-force soft printable pneumatics for soft robotic applications. Soft Robotics, 2016, 3, 144–158.

    Article  Google Scholar 

  34. https://v.qq.com/x/page/h0394k0nk37.html, [2017-04-19].

  35. Manti M, Hassan T, Passetti G, NicolòD’Elia, Laschi C, Cianchetti M. A Bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robotics, 2015, 2, 107–116.

    Article  Google Scholar 

  36. Timoshenko S P, Woinowsky-Krieger S. Theory of Plates and Shells, McGraw-hill, New York, USA, 1959.

    MATH  Google Scholar 

  37. Amend J R, Brown E, Rodenberg N, Jaeger H M, Lipson H. A positive pressure universal gripper based on the jamming of granular material. IEEE Transactions on Robotics, 2012, 28, 341–350.

    Article  Google Scholar 

  38. https://v.qq.com/x/page/g0394x42ko9.html, [2017-04-19].

  39. https://v.qq.com/x/page/n03942sh079.html, [2017-04-19].

Download references

Acknowledgment

This work was supported by the National Science Foundation support projects, China (grant numbers 61633004, 61403012, and 61333016); the Open Research Fund of Key Laboratory Space Utilization, Chinese Academy of Sciences (No.6050000201607004). Many thanks to Ziyu Ren and Hui Wang for their kind help in implementing the experimental apparatus, conducting the force experiments and performing the data analysis. Thanks to Xi Fang for her kind help in revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wen.

Electronic supplementary material

Supplementary material, approximately 3.84 MB.

Supplementary material, approximately 13.8 MB.

Supplementary material, approximately 27.8 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Gong, Z., Xie, Z. et al. A Soft Bionic Gripper with Variable Effective Length. J Bionic Eng 15, 220–235 (2018). https://doi.org/10.1007/s42235-018-0017-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0017-9

Keywords

Navigation