Skip to main content
Log in

A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Soft robotics has several promising properties for aquatic applications, such as safe interaction with environments, lightweight, low cost, etc. In this paper, we proposed the kinematic modeling and hydrodynamics experiments of a soft robotic arm with 3D locomotion capacity. We developed a mathematical model that incorporates the angle correction, as well as the open-loop model-based motion control. The model could precisely predict the three-dimensional (3D) movement, and the location error is less than 5.7 mm in different attitudes. Furthermore, we performed the hydrodynamic investigations and simultaneously measured the hydrodynamic forces and the wake flows at different amplitudes (50 mm, 100 mm, 150 mm, 200 mm) and frequencies (0.3 Hz, 0.4 Hz, 0.5 Hz) of the soft arm. Surprisingly, we found that the magnitudes of the hydrodynamic force (<1 N) and the torques (<0.08 N·m) of dynamically moving soft arm were tiny, which leads to negligible inertial effect for the underwater vehicle than those of the traditional rigid underwater manipulator. Finally, we demonstrated underwater picking and placing tasks of the soft manipulator by using a computer program that controls the tip attitude and velocity. This study may inspire future underwater manipulators that have properties of low-inertial, low power cost and can safely interact with the aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Odhner L U, Jentoft L P, Claffee M R, Corson N, Tenzer Y, Ma R R, Buehler M, Kohout R, Howe R D, Dollar A M. A compliant, underactuated hand for robust manipulation. International Journal of Robotics Research, 2014, 33, 736–752.

    Article  Google Scholar 

  2. Yeow C H, Baisch A T, Talbot S G, Walsh C J. Cable-driven finger exercise device with extension return springs for recreating standard therapy exercises. Journal of Medical Devices, 2014, 8, 014502.

    Article  Google Scholar 

  3. Mossadegh B, Polygerinos P, Keplinger C, Wennstedt S, Shepherd R F, Gupta U, Shim J, Bertoldi K, Walsh C J, Whitesides G M. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24, 2163–2170.

    Article  Google Scholar 

  4. Shepherd R F, Ilievski F, Choi W, Morina S A, Stokesa A A, Mazzeoa A D, Chena X, Wanga M, Whitesides G M. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20400.

    Article  Google Scholar 

  5. Girard A, Bigué J P L, O’Brien B M, Gisby T A, Anderson I A, Plante J S´. Soft two-degree-of-freedom dielectric elastomer position sensor exhibiting linear behavior. IEEE/ASME Transactions on Mechatronics, 2014, 20, 105–114.

    Article  Google Scholar 

  6. Shen Q, Wang T, Liang J, Wen L. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Materials & Structures, 2013, 22, 075035.

    Article  Google Scholar 

  7. Seok S, Onal C D, Cho K J, Wood R J, Rus D, Kim S. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1485–1497.

    Article  Google Scholar 

  8. Koh J S, Cho K J. Omega-shaped inchworm-inspired Crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 419–429.

    Article  Google Scholar 

  9. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521, 467.

    Article  Google Scholar 

  10. Suresh S A, Christensen D L, Hawkes E W, Cutkosky M. Surface and shape deposition manufacturing for the fabrication of a curved surface gripper. Journal of Mechanisms & Robotics, 2015, 7, 021005.

    Article  Google Scholar 

  11. Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M. Camouflage and display for soft machines. Science, 2012, 337, 828.

    Article  Google Scholar 

  12. Wang Y, Yang X, Chen Y, Wainwright D K, Kenaley C P, Gong Z, Liu Z, Liu H, Guan J, Wang T, Waver J C, Wood R J, Wen L. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics, 2017, 2, eaan8072.

    Article  Google Scholar 

  13. Bartlett N W, Tolley M T, Overvelde J T, Weaver J C, Mosadegh B, Bertoldi K, Whitesides G M, Wood R J. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349, 161–165.

    Article  Google Scholar 

  14. Cho K J, Koh J S, Kim S, Chu W S, Hong Y, Ahn S H. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering & Manufacturing, 2009, 10, 171.

    Article  Google Scholar 

  15. Stokes A A, Shepherd R F, Morin S A, Ilievski F, Whitesides G M. A hybrid combining hard and soft robots. Soft Robotics, 2014, 1, 70–74.

    Article  Google Scholar 

  16. Connolly F, Polygerinos P, Walsh C J, Bertoldi K. Mechanical programming of soft actuators by varying fiber angle. Soft Robotics, 2017, 2, 26–32.

    Article  Google Scholar 

  17. Park Y L, Chen B R, Pérezarancibia N O, Young D, Stirling L, Wood R J, Goldfield E C, Nagpal R. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspiration & Biomimetics, 2014, 9, 16007–16023.

    Article  Google Scholar 

  18. Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi C, Dario P. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 2011, 6, 525–531.

    Article  Google Scholar 

  19. Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration & Biomimetics, 2013, 8, 653–668.

    Article  Google Scholar 

  20. Hao Y, Gong Z, Xie Z, Guan S, Yang X, Ren Z, Wang T, Wen L. Universal soft pneumatic robotic gripper with variable effective length. IEEE China Control Conference, Chengdu, China, 2016, 6109–6114.

    Google Scholar 

  21. Hao Y, Wang T, Ren Z, Gong Z, Wang H, Yang X, Guan S, Wen L. Modeling and experiments of a soft robotic gripper in amphibious environments. International Journal of Advanced Robotic Systems, 2017, 14, https://doi.org/ 10.1177/1729881417707148.

  22. Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y, Xie T. Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.

    Article  Google Scholar 

  23. Park S J, Gazzola M, Park K S, Park S, Santo V D, Blevins E L, Lind J U, Campbell P H, Dauth S, Capulli A K, Pasqualini F S, Ahn S, Cho A, Yuan H, Maoz B M, Vijaykumar R, Choi J W, Deisseroth K, Lauder G V, Mahadevan L, Parker K K. Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353, 158–162.

    Article  Google Scholar 

  24. Cianchetti M, Calisti M, Margheri L, Kuba M, Laschi C. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration & Biomimetics, 2015, 10, 035003.

    Article  Google Scholar 

  25. Galloway K C, Becker K P, Phillips B, Kirby J, Licht S, Tchernov D, Wood R J, Gruber D F. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 2016, 3, https://doi.org/10.1089/soro.2015.0019.

  26. Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 2017, 8, 14230.

    Article  Google Scholar 

  27. Fernandez J J, Prats M, Sanz P J, Garcia J C, Marin R, Robinson M, Ribas D, Ridao P. Grasping for the seabed: Developing a nw uderwater robot arm for shallow-water intervention. IEEE Robotics & Automation Magazine, 2013, 20, 121–130.

    Article  Google Scholar 

  28. Nakashima M, Takahashi A. Clarification of unsteady fluid forces acting on limbs in swimming using an underwater robot arm. Journal of Fluid Science & Technology, 2012, 7, 114–128.

    Article  Google Scholar 

  29. Ambar R B, Sagara S, Imaike K. Experiment on a dual-arm underwater robot using resolved acceleration control method. Artificial Life & Robotics, 2015, 20, 34–41.

    Article  Google Scholar 

  30. Webster III R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. International Journal of Robotics Research, 2010, 29, 1661–1683.

    Article  Google Scholar 

  31. Rolf M, Steil J J. Constant curvature continuum kinematics as fast approximate model for the bionic handling assistant. IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, 3440–3446.

    Google Scholar 

  32. Jones B A, Walker I D. Kinematics for multisection continuum robots. IEEE Transactions on Robotics, 2006, 22, 43–55.

    Article  Google Scholar 

  33. Wang H, Chen W, Yu X, Deng T, Wang X, Pfeifer R. Visual servo control of cable-driven soft robotic manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013, 57–62.

    Google Scholar 

  34. Krishnan G. Kinematics of a new class of smart actuators for soft robots based on generalized pneumatic artificial muscles. IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, United States, 2014, 587–592.

    Google Scholar 

  35. Duriez C. Control of elastic soft robots based on real-time finite element method. IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, 3982–3987.

    Google Scholar 

  36. Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE Transactions on Robotics, 2015, 31, 823–834.

    Article  Google Scholar 

  37. Jiang H, Wang Z, Liu X, Chen X, Jin Y, You X, Chen X. A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior. IEEE International Conference on Robotics and Automation, Singapore, 2017.

    Google Scholar 

  38. Gong Z, Xie Z, Yang X, Wang T, Wen L. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm. IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2016, 509–514.

    Google Scholar 

  39. Yeoh O H. Some forms of the strain energy function for rubber. Rubber Chemistry & Technology, 2012, 66, 754–771.

    Article  Google Scholar 

  40. Marchese A D, Rus D. Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2015, 35, 840–869.

    Article  Google Scholar 

  41. Escande C, Chettibi T, Merzouki R, Coelen V, Pathak P M. Kinematic calibration of a multisection bionic manipulator. IEEE/ASME Transactions on Mechatronics, 2015, 20, 663–674.

    Article  Google Scholar 

  42. Hao Y, Wang T, Xie Z, Sun W, Liu Z, Fang X, Yang M and Wen L. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties. Journal of Micromechanics and Microengineering, 2018, 28 024004.

    Article  Google Scholar 

  43. Wen L, Weaver J C, Lauder G V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. The Journal of Experimental Biology, 2014, 217, 1656–1666.

    Article  Google Scholar 

  44. Wen L, Weaver J C, Thornycroft P M, Lauder G V. Hydrodynamic function of biomimetic shark skin: Effect of denticle pattern and spacing. Bioinspiration Biomimetics, 2015, 10, 066010.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Yufei Hao and Guangyao Huang for their help on this work. This work was supported by the National Science Foundation support key projects, China, under contract numbers 61633004 and 61333016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wen.

Electronic supplementary material

Supplementary material, approximately 5.07 MB.

Supplementary material, approximately 3.84 MB.

Supplementary material, approximately 4.93 MB.

A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Cheng, J., Chen, X. et al. A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments. J Bionic Eng 15, 204–219 (2018). https://doi.org/10.1007/s42235-018-0016-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0016-x

Keywords

Navigation