Skip to main content

Advertisement

Log in

Effects of Cell Microtopology on the In-plane Dynamic Crushing Analysis of Re-entrant Square Cellular Material

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

With the development of three-dimensional printing technologies, so-called cellular materials have achieved increasing attention due to outstanding properties. Unlike pure solid structures, properties of cellular materials are influenced by both utilized material and cell microtopology. The present paper proposes a novel type of re-entrant square cellular material. To explore the relationship between microtopology and macrodynamic responses systematically, an explicit dynamic finite element simulation method is used. This work starts by constructing theoretical models of relative density employing a two-dimensional unit cell. Then, the effects of geometric features and configurations on dynamic properties are explored, and simulations indicate that variations of geometric parameters strongly affect properties and that the staggered re-entrant squares are more stable than the regular re-entrant squares. Subsequently, the effects of the impact velocity on dynamic crushing behaviors are elaborated. On this basis, the relationship of unit mass energy absorption and geometric features is obtained by employing the response surface method. Furthermore, with targets of maximum unit mass energy absorption and minimum relative density, the optimal structural parameters are achieved by using non-dominated sorting genetic algorithm. The study provides a detailed introduction to dynamic behaviors of cellular materials and guidance to design new structures with superior characteristics of energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schaedler, T.A., Carter, W.B.: Architected cellular materials. Ann. Rev. Mater. Res. 46(1), 187–210 (2016)

    Article  Google Scholar 

  2. Zhang, Q., Yang, X., Li, P., et al.: Bioinspired engineering of honeycomb structure-using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015)

    Article  Google Scholar 

  3. Dharmasena, K., Queheillalt, D., Wadley, H., et al.: Dynamic response of a multilayer prismatic structure to impulsive loads incident from water. Int. J. Impact Eng. 36(4), 632–643 (2009)

    Article  Google Scholar 

  4. Xiong, J., Ma, L., Wu, L., et al.: Mechanical behavior of sandwich panels with hollow Al–Si tubes core construction. Mater. Des. 32(2), 592–597 (2011)

    Article  Google Scholar 

  5. Liu, Y., Zhang, X.C.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)

    Article  Google Scholar 

  6. Oftadeh, R., Haghpanah, B., Vella, D., et al.: Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113(10), 104301 (2014)

    Article  Google Scholar 

  7. Oftadeh, R., Haghpanah, B., Papadopoulos, J., et al.: Mechanics of anisotropic hierarchical honeycombs. Int. J. Mech. Sci. 81(4), 126–136 (2014)

    Article  Google Scholar 

  8. Galehdari, S.A., Kadkhodayan, M., Hadidimoud, S.: Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity. Int. J. Crashworth. 20(4), 387–400 (2015)

    Article  Google Scholar 

  9. Evans, A.G., Hutchinson, J.W., Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43(3), 171–221 (1998)

    Article  Google Scholar 

  10. Fleck, N.A., Deshpande, V.S.: The resistance of clamped sandwich beams to shock loading. J. Appl. Mech. 71(3), 386–401 (2004)

    Article  MATH  Google Scholar 

  11. Hutchinson, J.W., Xue, Z.: Metal sandwich plates optimized for pressure impulse. Int. J. Mech. Sci. 47(4), 545–569 (2005)

    Article  MATH  Google Scholar 

  12. Wang, A.J., Mcdowell, D.L.: In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Technol. 126(2), 137–156 (2004)

    Article  Google Scholar 

  13. Wang, A.J., Mcdowell, D.L.: Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int. J. Plast. 21(2), 285–320 (2005)

    Article  MATH  Google Scholar 

  14. Papka, S.D., Kyriakides, S.: Biaxial crushing of honeycombs: part 1: experiments. Int. J. Solids Struct. 36(29), 4367–4396 (1999)

    Article  MATH  Google Scholar 

  15. Papka, S.D., Kyriakides, S.: In-plane biaxial crushing of honeycombs: part II: analysis. Int. J. Solids Struct. 36(29), 4397–4423 (1999)

    Article  MATH  Google Scholar 

  16. Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)

    Article  Google Scholar 

  17. Smith, C.W., Grima, J.N., Evans, K.E.: A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater. 48(17), 4349–4356 (2000)

    Article  Google Scholar 

  18. Liu, X.L., Chen, Y.W., Jing, X.R., et al.: Optimized latin hypercube sampling method and its application. J. Natl. Univ. Def. Technol. 33(5), 73–77 (2011)

    Google Scholar 

  19. Reyes, A., Hopperstad, O.S., Berstad, T., et al.: Constitutive modeling of aluminum foam including fracture and statistical variation of density. Eur. J. Mech. A. Solids 22(6), 815–835 (2003)

    Article  MATH  Google Scholar 

  20. Kleijnen, J.P.C.: An overview of the design and analysis of simulation experiments for sensitivity analysis. Eur. J. Oper. Res. 164(2), 287–300 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: High-velocity plate impact of metal foams. Int. J. Impact Eng. 30(4), 421–445 (2004)

    Article  Google Scholar 

  22. Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Compos. Struct. 61(1), 61–71 (2003)

    Article  Google Scholar 

  23. Hönig, A., Stronge, W.J.: In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping. Int. J. Mech. Sci. 44(8), 1665–1696 (2002)

    Article  MATH  Google Scholar 

  24. Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminum foams. Part II-‘shock’ theory and comparison with experimental data and numerical models. J. Mech. Phys. Solids 53(10), 2206–2230 (2005)

    Article  Google Scholar 

  25. Yong, Z.: Design optimization on lightweight of full vehicle based on moving least square response surface method. J. Mech. Eng. 44(11), 192–196 (2008)

    Article  Google Scholar 

  26. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, And Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (Grant No. 201606170199) and the National Key Research and Development Program of China (2016YFB0101601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Zhao, Y., Liang, H. et al. Effects of Cell Microtopology on the In-plane Dynamic Crushing Analysis of Re-entrant Square Cellular Material. Automot. Innov. 1, 24–34 (2018). https://doi.org/10.1007/s42154-018-0005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-018-0005-0

Keywords

Navigation