Skip to main content

Advertisement

Log in

Green welding for various similar and dissimilar metals and alloys: present status and future possibilities

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Energy saving has become a priority for welding industry. This is due to the recent increase in energy demand and constraints in carbon emissions. Increasing environmental demands from governmental and customers strain the importance of reducing the environmental pollution while welding. Therefore, the minimum energy-oriented green welding process is must. Friction stir welding (FSW) is considered to be the most significant development in metal joining and is a “green” technology due to its energy efficiency, environment friendliness, and versatility. As compared to the conventional welding methods, FSW consumes considerably less energy. No shield gas or flux is used, thereby making the process environmentally friendly. No harmful gases are produced in FSW. Harmful gases adversely affect the surroundings. This creates health problems to persons carrying out welding and people living in nearby areas. Hence, there is a need to develop and use green welding techniques. An attempt has been made to study the present status and explore future possibilities in the field of FSW, so as to achieve the objectives of saving the electrical energy and protect the environment from pollution.

Friction stir welding process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  CAS  Google Scholar 

  2. Khaled T (2005) An outsider looks at friction stir welding. Report: ANM 112N-05-06

  3. Deb Roy T, Bhadeshia HKDH (2010) Friction stir welding of dissimilar alloys-a perspective. Sci Technol Weld Join 15(4):266–270

    Article  Google Scholar 

  4. Davies PS, Wynne BP, Rainforth WM, Thomas MJ, Threadgill PL (2011) Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V. Metall Mater Trans A 42:2278–2289

    Article  CAS  Google Scholar 

  5. Musa C, Licheri R, Locci AM, Orru R, Cao G, Rodriguez MA, Jaworska L (2009) Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. J Clean Prod 17:877–882

    Article  CAS  Google Scholar 

  6. Xiong J, Zhang G, Qiu Z, Li Y (2013) Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Clean Prod 41:82–88

    Article  Google Scholar 

  7. Jata KV, Sankaran KK, Ruschau JJ (2000) Friction stir welding effects on microstructure and fatigue of aluminium alloy 7050-T7451. Metall Mater Trans A 31A:2181–2192

    Article  CAS  Google Scholar 

  8. Liu HJ, Fujii H, Nogi K (2004) Microstructure and mechanical properties of friction stir welded joints of AC4A cast aluminium alloy. Mater Sci Technol 20:399–402

    Article  CAS  Google Scholar 

  9. Woo W, Choo H, Brown DW, Feng Z (2007) Influence of the tool pin and shoulder on microstructure and natural aging kinetics in a friction stir processed 6061-T6 aluminium alloy. Metall Mater Trans A 38A:69–76

    Article  CAS  Google Scholar 

  10. Liu FC, Ma ZY (2008) Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminium alloy. Metall Mater Trans A 39A:2378–2388

    Article  CAS  Google Scholar 

  11. Kumbhar NT, Bhanumurthy K (2008) Friction stir welding of Al 6061 alloy. Asian J Exp Sci 22(2):63–74

    CAS  Google Scholar 

  12. Chen T, Lin WB (2008) A study on dissimilar FSW process parameters in aluminium alloy and low carbon steel. International Conference on Smart Manufacturing Applications, Korea, pp 9–14

    Google Scholar 

  13. Elangovan K, Balasubramanian V, Babu S (2008) Developing an empirical relationship to predict tensile strength of friction stir welded AA 2219 aluminium alloy. J Mater Eng Perform 17:820–830

    Article  CAS  Google Scholar 

  14. Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA 6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296

    Article  Google Scholar 

  15. Moreira PMGP, Santos T, Tavares SMO, Trummer VR, Vilaca P, De Castro PMST (2009) Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Mater Des 30:180–187

    Article  CAS  Google Scholar 

  16. Kim NK, Kim BC, An YG, Jung BH, Song SW, Kang CY (2009) The effect of material arrangement on mechanical properties in friction stir welded dissimilar A5052/A5J32 aluminium alloys. Met Mater Int 15(4):671–675

    Article  CAS  Google Scholar 

  17. Kwon YJ, Shim SB, Park DH (2009) Friction stir welding of 5052 aluminium alloy plates. Trans Nonferrous Metals Soc China 19:23–27

    Article  Google Scholar 

  18. Zadpoor AA, Sinke J, Benedictus R, Pieters R (2008) Mechanical properties and microstructure of friction stir welded tailor-made blanks. Mater Sci Eng A 494:281–290

    Article  CAS  Google Scholar 

  19. Muthukrishnan M, Marimuthu K, (2010) Some studies on mechanical properties of friction stir butt welded Al 6082-T6 plates. IEEE 269–273

  20. Babu GR, Murti KGK, Janardhana GR (2008) An experimental study on the effect of welding parameters on mechanical and microstructural properties of AA 6082-T6 friction stir welded butt joints. ARPN J Eng Appl Sci 3(5):68–74

    Google Scholar 

  21. Adamowski J, Szkodo M (2007) Friction stir welds (FSW) of aluminium alloy AW 6082-T6. J Achiev Mater Manuf Eng 20(1–2):403–406

    Google Scholar 

  22. Patil HS, Soman SN (2010) Experimental study on the effect of welding speed and tool pin profiles on AA 6082-O aluminium friction stir welded butt joints. Int J Eng Sci Technol 2(5):268–275

    Article  Google Scholar 

  23. Kim WK, Won ST, Goo BC (2010) A study on mechanical characteristics of the friction stir welded A6005-T5 extrusion. Int J Precis Eng Manuf 11(6):931–936

    Article  Google Scholar 

  24. Hussain AK, Quadri SAP (2010) Evaluation of parameters of friction stir welding for aluminium Aa6351 alloy. Int J Eng Sci Technol 2(10):5977–5984

    Google Scholar 

  25. Al-Badrawy A, El-Nasr A (2010) Mechanical properties and fracture behavior of friction stir welded 7075-T6 Al alloy. J Eng Comput Sci 1(2):147–161

    Google Scholar 

  26. Shukla RK, Shah PK (2010) Investigation of joint properties of friction stir welding of aluminium 6061 alloy to copper. Int J Eng Res Technol 3(3):613–620

    Google Scholar 

  27. Bisadi H, Tour M, Tavakoli A (2011) The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 alloy lap joint. Am J Mater Sci 1(2):93–97

    Article  Google Scholar 

  28. Joshi V, Balasubramanium K, Prakash RV (2011) Study of defects in friction stir welded AA 5083 by radiography, ultrasonic and phased array ultrasonic technique. Pro of the National Semi and Exhibition on Non-destructive Evaluation (NDE 2011)

  29. Parida B, Pal S, Biswas P, Mohapatra MM, Tikader S (2011) Mechanical and micro-structural study of friction stir welding of Al-alloy. IJARME 1(2):1–6

    Google Scholar 

  30. Cerri E, Leo P, Wang X, Embury JD (2011) Mechanical properties and microstructural evolution of friction-stir-welded thin sheet aluminium alloys. Metall Mater Trans A 42A:1283–1295

    Article  CAS  Google Scholar 

  31. Jean MD, Chen WJ, Lin JD (2012) Joint properties of tilted angles of spin for 6061 aluminium alloys in friction stir welded experiments. IEEE 3296–3299

  32. Kumar AV, Balachandar K (2012) Effect of welding parameters on metallurgical properties of friction stir welded aluminium alloy 6063-O. J Appl Sci 12(12):1255–1264

    Article  CAS  Google Scholar 

  33. Kumar R, Singh K, Panday S (2012) Process forces and heat input as function of process parameters in AA 5083 friction stir welds. Trans Nonferrous Metals Soc China 22:288–298

    Article  CAS  Google Scholar 

  34. Emami S, Saeid T (2015) Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass. Acta Metall Sin (Engl Lett) 28(6):766–771

    Article  CAS  Google Scholar 

  35. Farzadi A, Mat.-wiss U (2017) Correlation between precipitate microstructure and mechanical properties in AA7075-T6 aluminum alloy friction stir welded joints. Mat S Engg Tech 48(2):151–162

    CAS  Google Scholar 

  36. Lin Y, Lu C, Chengyang W, Zheng Z (2018) Influences of friction stir welding and post-weld heat treatment on Al–Cu–Li alloy. Adv Eng Mater 20:1–8

    Google Scholar 

  37. D'Urso G, Ceretti E, Giardini C, Maccarini G (2009) The effect of process parameters and tool geometry on mechanical properties of friction stir welded aluminium butt joints. Int J Mater Form 2(1):303–306

    Article  Google Scholar 

  38. Shivaraj MK, Dinakaran V, Mahadevan V (2010) Friction stir welding on aluminium alloys AA2024-T4 and AA7075-T6. 2nd International Conference on Comp Engg and Tech IEEE 5

  39. Shah S, Tosunoglu S (2012) Friction stir welding: current state of the art and future prospects. WMSCI 2012, Orlando, Florida, July 17-20, 1–6

  40. Awang M, Raza SK, Yahaya MSA (2015) Microstructure and hardness investigation of different welding passes in weld zones. Mat Sc Engg Tech 46:4–5

    Google Scholar 

  41. Rakesh R, de Oliveira Miranda AC, Guo SH, Walbridge S, Gerlich A (2019) Fatigue analysis of friction stir welded butt joints under bending and tension load. Eng Fract Mech 206:34–45

    Article  Google Scholar 

  42. Guoqin S, Wang C, Wei X, Shang D, Chen S (2019) Study on small fatigue crack initiation and growth for friction stir welded joints. Mat Sc Engg A 739:71–85

    Article  CAS  Google Scholar 

  43. Reynolds AP, Wei T, Herold TG, Prask H (2003) Structure, properties and residual stress of 304L stainless steel friction stir welds. Scr Mater 48:1289–1294

    Article  CAS  Google Scholar 

  44. Meran C, Canyurt OE (2010) Friction stir welding of austenitic stainless steels. J Achiev Mat Manuf Eng 43(1):432–439

    Google Scholar 

  45. Ramachandran KK, Murugan N, Shashi Kumar S (2015) Friction stir welding of aluminum alloy AA5052 and HSLA steel. Weld J 291–300

  46. Kalemba I, Dymek S (2016) Microstructure and properties of friction stir welded aluminium alloys. Weld Int 30(1):38–42

    Article  Google Scholar 

  47. Andreas B, Gigl T, Hugenschmidt CP, Zaeh MF (2019) Characterization of the microstructure in friction stir welds of EN AW-2219 using coincident Doppler-broadening spectroscopy. Mater Charact 149:143–152

    Article  CAS  Google Scholar 

  48. Feng AH, Chen DL, Ma ZY, Ma WY, Song RJ (2014) Microstructure and strain hardening of a friction stir welded high-strength Al–Zn–Mg alloy. Acta Metall Sin (Engl Lett) 27(4):723–729

    Article  CAS  Google Scholar 

  49. Mohammadi-pour M, Khodabandeh A, Mohammadi-pour S, Paidar M (2016) Microstructure and mechanical properties of joints welded by friction-stir welding in aluminum alloy 7075-T6 plates for aerospace application. Rare Metals 1–9

  50. Velichko OV, Ivanov SY, Karkhin VA, Lopota VA, Makhin ID (2016) Friction stir welding of thick plates of Al–Mg–Sc alloy. Weld Int 30(8):630–634

    Article  Google Scholar 

  51. Zhou L, Zhang RX, Hu XY, Guo N, Zhao HH, Huang YX (2019) Effects of rotation speed of assisted shoulder on microstructure and mechanical properties of 6061-T6 aluminum alloy by dual-rotation friction stir welding. Int J Adv Manuf Technol 100:199–208

    Article  Google Scholar 

  52. Sundaravel V, Raju R, Rao SRK (2010) Multiobjective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis. Mater Manuf Process 25:1206–1212

    Article  CAS  Google Scholar 

  53. Chi-Hui C, Lin W-B, Chen T (2011) Optimal FSW process parameters for aluminum alloys AA5083. J Chin Inst Eng 34(1):99–105

    Article  CAS  Google Scholar 

  54. Rajakumar S, Balasubramanian V (2012) Multi-response optimization of friction-stir-welded AA1100 aluminum alloy joints. J Mater Eng Perform 21:809–822

    Article  CAS  Google Scholar 

  55. Vidal C, Infante V (2013) Optimization of FS welding parameters for improving mechanical behavior of AA2024-T351 joints based on Taguchi method. J Mater Eng Perform 22:2261–2270

    Article  CAS  Google Scholar 

  56. Khethier AM, Khamass HS, Adnan KA (2016) Optimization of mechanical properties of friction stir spot welded joints for dissimilar aluminum alloys (AA2024-T3 and AA 5754-H114). Arab J Sci Eng 41:4563–4572

    Article  CAS  Google Scholar 

  57. Trueba L Jr, Torres MA, Johannes LB, Rybicki D (2018) Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. Int J Mater Form 11(4):559–570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Bhushan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, R.K., Sharma, D. Green welding for various similar and dissimilar metals and alloys: present status and future possibilities. Adv Compos Hybrid Mater 2, 389–406 (2019). https://doi.org/10.1007/s42114-019-00094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00094-8

Keywords

Navigation