Skip to main content
Log in

Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A class of graphene oxide (GO) Ormosil glasses with excellent nonlinear optical properties were made with sol-gel method. The as-prepared GO Ormosil glasses were highly transparent in visible and near-infrared region, due to the uniform dispersion of modified GO in the matrix. These Ormosil glasses have a broadband optical limiting effect from 532 to 1570 nm, with lower optical limiting onset energy density (FON). The nonlinear absorption coefficients of the Ormosil glass could reach 210.62, 647.96, and 43.10 cm GW−1 at 532, 1064, and 1570 nm. The optical limiting properties of the Ormosil glasses come from nonlinear absorption proved by Z-scan measurements. Therefore, the Ormosil glasses have potential applications in nonlinear optical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J, Blau WJ (2009) Inorganic and hybrid nanostructures for optical limiting. J Opt A Pure Appl Opt 11(11):1–11

    Article  Google Scholar 

  2. Zhang C, Song Y, Wang X (2007) Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: A comparative study. Coord Chem Rev 251(s 1–2):111–141

    Article  Google Scholar 

  3. Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes. Phys Rev Lett 82(12):2548–2551

    Article  Google Scholar 

  4. Georgakilas V, Guldi DM, Signorini R, Bozio R, Prato M (2003) Organic functionalization and optical properties of carbon onions. J Am Chem Soc 125(47):14268–14269

    Article  Google Scholar 

  5. Tutt LW, Kost A (1992) Optical Limiting Performance of C60 and C70 Solutions. Nature 356(6366):225–226

    Article  Google Scholar 

  6. Perry JW, Mansour K, Bedworth PV, Ng D, Marder SR, Miles P, Wada T, Tian M, Sasabe H (1996) Organic Optical Limiter with a Strong Nonlinear Absorptive Response. Science 273(5281):1533–1536

    Article  Google Scholar 

  7. Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband Nonlinear Optical Response of Graphene Dispersions. Adv Mater 21(23):2430–2435

    Article  Google Scholar 

  8. Lim GK, Clark J, Ho PKH, Chen ZL, Goh RGS, Ng WH, Tan HW, Friend RH, Chua LL (2011) Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat Photonics 5(9):554–560

    Article  Google Scholar 

  9. Zheng D, Tang G, Zhang HB, Yu ZZ, Yavari F, Koratkar N, Lim SH, Lee MW (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72(2):284–289

    Article  Google Scholar 

  10. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem Mater 21(13):2950–2956

    Article  Google Scholar 

  11. Liaros N, Koudoumas E, Couris S (2014) Broadband near infrared optical power limiting of few layered graphene oxides. Appl Phys Lett 104(19): 191112:1–5

    Article  Google Scholar 

  12. Chantharasupawong P, Philip R, Narayanan NT, Sudeep PM, Mathkar A, Ajayan PM, Thomas J (2012) Optical Power Limiting in Fluorinated Graphene Oxide: An Insight into the Nonlinear Optical Properties. J Phys Chem C 116(49):25955–25961

    Article  Google Scholar 

  13. Zhao J, Wu L, Zhan C, Shao Q, Guo Z, Zhang L (2017) Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer 133:272–287

    Article  Google Scholar 

  14. Zhang JX, Liang YX, Wang XJ, Zhou HJ, Li SY, Zhang J, Feng Y, Lu N, Wang Q, Guo ZH (2017) Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-42017-40007-42110

  15. Gan Y, Feng M, Zhan H (2014) Enhanced optical limiting effects of graphene materials in polyimide. Appl Phys Lett 104(17): 171105):1–5

    Article  Google Scholar 

  16. Wang C, Zhao M, Li J, Yu J, Sun S, Ge S, Guo X, Xie F, Jiang B, Wujcik EK, Huang Y, Wang N, Guo Z (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    Article  Google Scholar 

  17. Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Ryu JE, Shankar A, Li T, Yan C, Guo Z (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36

    Article  Google Scholar 

  18. Zhang J, Zheng Y, Zhou H, Zhang J, Zou J (2012) The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites. Adv Mater Sci Eng 2012. https://doi.org/10.1155/2012/518392

  19. Zayat M, Pardo R, Castellón E, Torres L, Almendro D, Parejo PG, A Á, Belenguer T, García-Revilla S, Balda R (2011) Optical and electro-optical materials prepared by the sol-gel method. Adv Mater 23(44):5318–5323

    Article  Google Scholar 

  20. Azarang M, Shuhaimi A, Yousefi R, Golsheikh AM, Sookhakian M (2014) Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram Int 40(7):10217–10221

    Article  Google Scholar 

  21. Zheng C, Zheng Y, Chen W, Wei L (2015) Encapsulation of graphene oxide/metal hybrids in nanostructured sol–gel silica ORMOSIL matrices and its applications in optical limiting. Opt Laser Technol 68:52–59

    Article  Google Scholar 

  22. Hashim N, Muda Z, Hussein M, Isa I, Mohamed A, Kamari A, Bakar S, Mamat M, Jaafar A (2016) A brief review on recent graphene oxide-based material nanocomposites: Synthesis and applications. J Mater Environ Sci 7(9):3225–3243

    Google Scholar 

  23. Zheng C, Feng M, Du Y, Zhan H (2009) Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass. Carbon 47(12):2889–2897

    Article  Google Scholar 

  24. Zheng X, Feng M, Zhan H (2013) Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. J Mater Chem 1(41):6759–6766

    Google Scholar 

  25. Zheng X, Feng M, Li Z, Song Y, Zhan H (2014) Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices. J Mater Chem C 2(21):4121–4125

    Article  Google Scholar 

  26. Xie Z, Wang F, Liu CY (2012) Organic-inorganic hybrid functional carbon dot gel glasses. Adv Mater 24(13):1716–1721

    Article  Google Scholar 

  27. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent Functionalization of Chemically Converted Graphene Sheets via Silane and Its Reinforcement. J Mater Chem 19(26):4632–4638

    Article  Google Scholar 

  28. Tao L, Zhou B, Bai G, Wang Y, Yu SF, Shu PL, Tsang YH, Yao J, Xu D (2013) Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response. J Phys Chem C 117(44):23108–23116

    Article  Google Scholar 

  29. Medda SK, De G (2009) Inorganic−Organic Nanocomposite Based Hard Coatings on Plastics Using In Situ Generated Nano-SiO2 Bonded with ≡Si—O—Si—PEO Hybrid Network. Ind Eng Chem Res 48(14):4326–4333

    Article  Google Scholar 

  30. Shirk J, Pong R, Flom S, Heckmann A, Hanack M (2000) Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines. J Phys Chem A 104(7):1438–1449

    Article  Google Scholar 

  31. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  Google Scholar 

  32. Cuong TV, Pham VH, Tran QT, Hahn SH, Jin SC, Shin EW, Kim EJ (2010) Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64(3):399–401

    Article  Google Scholar 

  33. Tung VC, Allen MJ, Yang YY, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25–29

    Article  Google Scholar 

  34. Bhowmik K, Pramanik S, Medda SK, De G (2012) Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass. J Mater Chem 22(47):24690–24697

    Article  Google Scholar 

  35. Dini D, Calvete MJ, Hanack M (2017) Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chem Rev 116(22):13043–13233

    Article  Google Scholar 

  36. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347

    Article  Google Scholar 

  37. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306(5696):666–669

    Article  Google Scholar 

  38. Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, Lee S (2010) Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48(8):2282–2289

    Article  Google Scholar 

  39. Wang S, Chia PJ, Chua LL, Zhao LH, Png RQ, Sivaramakrishnan S, Zhou M, Goh GS, Friend RH, Wee TS (2008) Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets. Adv Mater 20(18):3440–3446

    Article  Google Scholar 

  40. Ouyang Q, Xu Z, Lei Z, Dong H, Yu H, Qi L, Li C, Chen Y (2014) Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses. Carbon 67(2):214–220

    Article  Google Scholar 

  41. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26(4):760–769

    Article  Google Scholar 

  42. Liaros N, Iliopoulos K, Stylianakis MM, Koudoumas E, Couris S (2013) Optical limiting action of few layered graphene oxide dispersed in different solvents. Opt Mater 36(1):112–117

    Article  Google Scholar 

  43. Chin KC, Gohel A, Chen WZ, Elim HI, Ji W, Chong GL, Sow CH, Wee ATS (2005) Gold and silver coated carbon nanotubes: An improved broad-band optical limiter. Chem Phys Lett 409(1–3):85–88

    Article  Google Scholar 

  44. Feng M, Zhan H, Chen Y (2010) Nonlinear optical and optical limiting properties of graphene families. Appl Phys Lett 96(3): 033107):1–3

    Google Scholar 

  45. Liu Z, Wang Y, Zhang X, Xu Y (2009) Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett 94(2): 021902):1–3

    Google Scholar 

  46. Liaros N, Aloukos P, Kolokithasntoukas A, Bakandritsos A, Szabo T, Zboril R, Couris S (2015) Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J Phys Chem C 117(13):6842–6850

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. X. Gan in HKPU for help of Graphic Abstract.

Funding

This work was funded by National Natural Science Foundation of China (21702214).

Author information

Authors and Affiliations

Authors

Contributions

S. Zhou and Z. Xie initialized and designed the research. X. Sun conducted the preparation of all the samples, characterizations, nonlinear experiments, and analysis of the data and wrote the manuscript. X. Hu, J. Sun, and P. Chen took part in the discussions of all the experiments.

Corresponding authors

Correspondence to Zheng Xie or Shuyun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Hu, X., Sun, J. et al. Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Adv Compos Hybrid Mater 1, 397–403 (2018). https://doi.org/10.1007/s42114-018-0033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0033-6

Keywords

Navigation