Skip to main content
Log in

Pitman closeness domination in predictive density estimation for two-ordered normal means under \(\alpha\)-divergence loss

  • Original Paper
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

We consider Pitman closeness domination in predictive density estimation problems when the underlying loss metric is \(\alpha\)-divergence, \(\{D(\alpha )\}\), a loss introduced by Csiszàr (Stud Sci Math Hung 2:299–318, 1967). The underlying distributions considered are normal location-scale models, including the distribution of the observables, the distribution of the variable, whose density is to be predicted, and the estimated predictive density which will be taken to be of the plug-in type. The scales may be known or unknown. Chang and Strawderman (J Multivar Anal 128:1–9, 2014) have derived a general expression for the \(\alpha\)-divergence loss in this setup, and have shown that it is a concave monotone function of quadratic loss, and also a function of the variances (predicand, and plug-in). We demonstrate \(\{D(\alpha )\}\) Pitman closeness domination of certain plug-in predictive densities over others for the entire class of metrics simultaneously when modified Pitman closeness domination holds in the related problem of estimating the mean. We also establish \(\{D(\alpha )\}\) Pitman closeness results for certain generalized Bayesian (best invariant) predictive density estimators. Examples of \(\{D(\alpha )\}\) Pitman closeness domination presented relate to the problem of estimating the predictive density of the variable with the larger mean. We also consider the case of two-ordered normal means with a known covariance matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical inference under order restrictions. New York: Wiley.

    MATH  Google Scholar 

  • Chang, Y.-T., Fukuda, K., & Shinozaki, N. (2017). Estimation of two ordered normal means when a covariance matrix is known. Statistics, 5, 1095–1104.

    Article  MathSciNet  Google Scholar 

  • Chang, Y.-T., Oono, Y., & Shinozaki, N. (2012). Improved estimators for the common mean and ordered means of two normal distributions with ordered variances. Journal of Statistical Planning and Inference, 142, 2619–2628.

    Article  MathSciNet  Google Scholar 

  • Chang, Y.-T., & Shinozaki, N. (2015). Estimation of two ordered normal means under modified Pitman nearness criterion. Annals of the Institute of Statistical Mathematics, 67, 863–883.

    Article  MathSciNet  Google Scholar 

  • Chang, Y.-T., & Strawderman, W. E. (2014). Stochastic domination in predictive density estimation for ordered normal means under \(\alpha\)-divergence loss. Journal of Multivariate Analysis, 128, 1–9.

    Article  MathSciNet  Google Scholar 

  • Chou, J.-P., & Strawderman, W. E. (1990). Minimax estimation of means of multivariate normal mixtures. Journal of Multivariate Analysis, 35, 141–150.

    Article  MathSciNet  Google Scholar 

  • Cohen, A., & Sackrowitz, B. (2004). A discussion of some inference issues in order restricted models. Canadian Journal of Statistics, 32(2), 199–205.

    Article  MathSciNet  Google Scholar 

  • Corcuera, J. M., & Giummolè, F. (1999). A generalized Bayes rule for prediction. Scandinavian Journal of Statistics, 26, 265–279.

    Article  MathSciNet  Google Scholar 

  • Csiszàr, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2, 299–318.

    MathSciNet  MATH  Google Scholar 

  • Fernández, M. A., Rueda, C., & Salvador, B. (2000). Parameter estimation under orthant restrictions. Canadian Journal of Statistics, 28(1), 171–181.

    Article  MathSciNet  Google Scholar 

  • Fourdrinier, D., Marchand, E., Righi, A., & Strawderman, W. E. (2011). On improved predictive density with parametric constraints. Electronic Journal of Statistics, 5, 172–191.

    Article  MathSciNet  Google Scholar 

  • Fourdrinier, D., Strawderman, W. E., & Wells, M. T. (2018). Shrinkage estimation. Berlin: Spring series in Statistics.

    Book  Google Scholar 

  • Graybill, F. A., & Deal, R. B. (1959). Combining unbiased estimators. Biometrics, 15, 543–550.

    Article  MathSciNet  Google Scholar 

  • Gupta, R. D., & Singh, H. (1992). Pitman nearness comparisons of estimates of two ordered normal means. Australian Journal of Statistics, 34(3), 407–414.

    Article  MathSciNet  Google Scholar 

  • Hwang, J. T., & Peddada, S. D. (1994). Confidence interval estimation subject to order restrictions. The Annals of Statistics, 22(1), 67–93.

    Article  MathSciNet  Google Scholar 

  • Keating, J. P., Mason, R. L., & Sen, P. K. (1993). Pitman’s measure of closeness: A comparison of statistical estimators. Philadelphia: SIAM.

    Book  Google Scholar 

  • Kubokawa, T. (1989). Closer estimation of a common mean in the sense of Pitman. Annals of the Institute of Statistical Mathematics, 41(3), 477–484.

    Article  MathSciNet  Google Scholar 

  • Lee, C. I. C. (1981). The quadratic loss of isotonic regression under normality. The Annals of Statistics, 9(3), 686–688.

    Article  MathSciNet  Google Scholar 

  • Maruyama, Y., & Strawderman, W. E. (2012). Bayesian predictive densities for linear regression models under \(\alpha\)-divergence loss: Some results and open problems. Contemporary Developments in Bayesian Analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman. Institute of Mathematical Statistics. vol 8, pp 42–56

  • Nayak, T. K. (1990). Estimation of location and scale parameters using generalized Pitman nearness criterion. Journal of Statistical Planning and Inference, 24, 259–268.

    Article  MathSciNet  Google Scholar 

  • Oono, Y., & Shinozaki, N. (2005). Estimation of two order restricted normal means with unknown and possibly unequal variances. Journal of Statistical Planning and Inference, 131(2), 349–363.

    Article  MathSciNet  Google Scholar 

  • Pitman, E. J. G. (1937). The closest estimates of statistical parameters. Proceedings of the Cambridge Philosophical Society, 33, 212–222.

    Article  Google Scholar 

  • Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order restricted statistical inference. New York: Wiley.

    MATH  Google Scholar 

  • Shinozaki, N., & Chang, Y.-T. (1999). A comparison of maximum likelihood and the best unbiased estimators in the estimation of linear combinations of positive normal means. Statistics and Decisions, 17, 125–136.

    MathSciNet  MATH  Google Scholar 

  • Silvapulle, M. J., & Sen, P. K. (2004). Constrained statistical inference. New York: Wiley.

    Google Scholar 

  • van Eeden, C. (2006). Restricted parameter space estimation problems. Lecture notes in statistics 188. Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor, the Associate Editor, and anonymous reviewers for quite thoughtful and constructive comments which lead to an improved version of this paper. This work is supported by Grant-in-Aid for Scientific Research (C) nos. 26330047, 18K11196 Japan (to Yuan-Tsung Chang and Nobuo Shinozaki). This work was partially supported by a Grant from the Simons Foundation (#418098 to William Strawderman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Tsung Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12 kb)

Appendix

Appendix

Proof of Theorem 3

We make the variable transformation

$$\begin{aligned} Z_i = \frac{ {\bar{X}}_i-\mu _1}{\tau _1}, \quad i=1,2. \end{aligned}$$

Then, \(Z_1\) and \(Z_2\) are mutually independently distributed as N(0, 1) and \(N(\varDelta /\tau _1, \tau _2^2/\tau _1^2)\), respectively.

We note that \(\hat{\varvec{\mu }}^{{\rm CS}} \ne \hat{\varvec{\mu }}^{{\rm OS}}\) if and only if \({\bar{X}}_1 > {\bar{X}}_2\) and \(s_1^2 > s_2^2\). In this case, putting \(c_i=n_i/(n_1+n_2), i=1,2\), we have

$$\begin{aligned}&\sum _{i=1}^2 (\hat{\mu }_i^{{\rm CS}}- \mu _i)^2/\sigma _i^2 \\&\quad =\biggl ( \frac{c_1( {\bar{X}}_1-\mu _1)+c_2({\bar{X}}_2- \mu _1)}{\sqrt{n_1}\tau _1} \biggr )^2 + \biggl ( \frac{c_1( {\bar{X}}_1-\mu _2)+c_2({\bar{X}}_2- \mu _2)}{\sqrt{n_2}\tau _2} \biggr )^2 \nonumber \\&\quad =\frac{1}{n_1} (c_1 Z_1+ c_2Z_2)^2+\frac{1}{n_2} \biggl ( \frac{\tau _1}{\tau _2}(c_1 Z_1+c_2Z_2) - \frac{\varDelta }{\tau _2} \biggr ) ^2 \nonumber \\&\quad = \biggl (\frac{1}{n_1}+ \frac{\tau _1^2}{n_2\tau _2^2} \biggr )(c_1 Z_1+ c_2Z_2)^2- \frac{2\varDelta \tau _1}{n_2\tau _2^2}(c_1 Z_1+ c_2Z_2)+ \frac{\varDelta ^2}{n_2\tau _2^2}. \end{aligned}$$

Similarly

$$\begin{aligned} \sum _{i=1}^2 (\hat{\mu }_i^{{\rm OS}}- \mu _i)^2/\sigma _i^2= \biggl (\frac{1}{n_1}+ \frac{\tau _1^2}{n_2\tau _2^2} \biggr )(\gamma _1 Z_1+ \gamma _2Z_2)^2- \frac{2\varDelta \tau _1}{n_2\tau _2^2} (\gamma _1 Z_1+ \gamma _2Z_2)+ \frac{\varDelta ^2}{n_2\tau _2^2}, \end{aligned}$$

where \(\gamma _1=n_1s_2^2/(n_1s_2^2+n_2s_1^2)\) and \(\gamma _2=n_2s_1^2/(n_1s_2^2+n_2s_1^2)\). Since \(Z_1 - Z_2= ({\bar{X}}_1- {\bar{X}}_2)/ \tau _1 >0\) and \(c_1 \ge \gamma _1\), we have \((c_1- \gamma _1)Z_1+(c_2-\gamma _2)Z_2 \ge 0\). Therefore, we see that

$$\begin{aligned}&\sum _{i=1}^2 (\hat{\mu }_i^{{\rm CS}}- \mu _i)^2/\sigma _i^2 \le \sum _{i=1}^2 (\hat{\mu }_i^{{\rm OS}}- \mu _i)^2/\sigma _i^2 \\&\quad \Leftrightarrow [(c_1- \gamma _1)Z_1+ (c_2-\gamma _2)Z_2 ] \biggl [ \biggl (\frac{1}{n_1}+ \frac{\tau _1^2}{n_2\tau _2^2} \biggr ) [ (c_1+ \gamma _1)Z_1+ (c_2+\gamma _2)Z_2] \\&\qquad - \frac{2\varDelta \tau _1}{n_2\tau _2^2} \biggr ] \le 0 \\&\quad \Leftrightarrow \biggl (\tau _1^2+ \frac{n_2\tau _2^2}{n_1} \biggr ) [ (c_1+ \gamma _1)Z_1+ (c_2+\gamma _2)Z_2] - 2\varDelta \tau _1 \le 0. \end{aligned}$$

Then, the numerator of (14) becomes

$$\begin{aligned}&P \biggl \{ \sum _{i=1}^2 (\hat{\mu }_i^{{\rm CS}}- \mu _i)^2/\sigma _i^2 \le \sum _{i=1}^2 (\hat{\mu }_i^{{\rm OS}}- \mu _i)^2/\sigma _i^2, {\bar{X}}_1> {\bar{X}}_2, s_1^2> s_2^2 \biggr \} \nonumber \\&\quad = P \biggl \{ \biggl (\tau _1^2+ \frac{n_2\tau _2^2}{n_1} \biggr ) [ (c_1+ \gamma _1)Z_1+ (c_2+\gamma _2)Z_2] - 2\varDelta \tau _1 \le 0 , Z_1> Z_2,\nonumber \\&\qquad s_1^2 > s_2^2 \biggr \}. \end{aligned}$$
(19)

We further make the variable transformation:

$$\begin{aligned} Y_1 = Z_1 - Z_2, \quad Y_2 = Z_1 + (\tau _1^2/ \tau _2^2) Z_2 . \end{aligned}$$

Then, \(Y_1\) and \(Y_2\) are mutually independently distributed as \(N( -\varDelta /\tau _1,\) \((\tau _1^2+\tau _2^2)/\tau _1^2)\) and \(N( \tau _1\varDelta /\tau _2^2, (\tau _1^2+\tau _2^2)/\tau _2^2)\), respectively.

Noting that

$$\begin{aligned} Z_1 = \frac{\tau _1^2 Y_1+\tau _2^2 Y_2}{\tau _1^2 + \tau _2^2} \quad \text{ and } \quad Z_2 = \frac{\tau _2^2(Y_2-Y_1)}{\tau _1^2 + \tau _2^2}, \end{aligned}$$

we have

$$\begin{aligned}&\biggl (\tau _1^2+ \frac{n_2\tau _2^2}{n_1} \biggr ) \biggl [(c_1+ \gamma _1) Z_1+(c_2+ \gamma _2)Z_2 \biggr ] -2 \varDelta \tau _1 \\&\quad =\biggl (\frac{\tau _1^2+ n_2\tau _2^2/n_1}{\tau _1^2 + \tau _2^2} \biggr ) \biggl [\{(c_1+ \gamma _1) \tau _1^2-(c_2+ \gamma _2 )\tau _2^2 \}Y_1+ 2\tau _2^2 Y_2 \\&\qquad -2 \varDelta \tau _1 \frac{\tau _1^2 + \tau _2^2}{\tau _1^2+ n_2\tau _2^2/n_1}\biggr ]\\&\quad \le \biggl (\frac{\tau _1^2+ n_2\tau _2^2/n_1}{\tau _1^2 + \tau _2^2} \biggr ) \biggl [\{(c_1+ \gamma _1) \tau _1^2-(c_2+ \gamma _2 )\tau _2^2 \}Y_1+ 2\tau _2^2 Y_2 -2 \varDelta \tau _1 \biggr ] \end{aligned}$$

if \(n_1 \ge n_2\). Therefore, we see that

$$\begin{aligned}{}[(c_1+ \gamma _1) \tau _1^2-(c_2+ \gamma _2 )\tau _2^2]Y_1+ 2\tau _2^2 Y_2 -2 \varDelta \tau _1\le 0 \end{aligned}$$

implies

$$\begin{aligned} \biggl (\tau _1^2+ \frac{n_2\tau _2^2}{n_1} \biggr ) \biggl [(c_1+ \gamma _1) Z_1+(c_2+ \gamma _2)Z_2 \biggr ] -2 \varDelta \tau _1 \le 0. \end{aligned}$$

Thus, we have

$$\begin{aligned} (\hbox {19})\ge & {} P\biggl \{ Y_2 \le \frac{2\varDelta \tau _1- [(c_1+ \gamma _1) \tau _1^2 -(c_2+ \gamma _2) \tau _2^2]Y_1}{2 \tau _2^2}, Y_1>0, s_1^2> s_2^2 \biggr \} \\= & {} \int _{s_1^2 > s_2^2}\biggl [\int _0 ^\infty \varPhi \biggl ( \frac{[(c_2+\gamma _2)\tau _2^2-(c_1+\gamma _1)\tau _1^2]y_1 }{2\tau _2\sqrt{\tau _1^2+\tau _2^2} } \biggr ) g(y_1 ) {\text{d}}y_1 \biggr ] h(s_1^2, s_2^2) ds_1^2 ds_2^2, \nonumber \end{aligned}$$

which is larger than \(1/2 P \{ Y_1> 0, s_1^2 > s_2^2\},\) because

$$\begin{aligned} (c_2+\gamma _2)\tau _2^2-(c_1+\gamma _1)\tau _1^2> 0 \quad \text{ for } \quad s_1^2 > s_2^2. \end{aligned}$$

This completes the proof.

Proof of Theorem 4

We first show that \(\hat{\mu }_2^{{\rm MLE}}\) is Pitman closer to \(\mu _2\) than \({\bar{X}}_2\).

We see that \(\hat{\mu }_2^{{\rm MLE}} \ne {\bar{X}}_2\) if and only if \({\bar{X}}_1 > {\bar{X}}_2\). In this case \(\hat{\mu }_2^{{\rm MLE}}=c_1 {\bar{X}}_1 + c_2 {\bar{X}}_2\), where \(c_1=n_1\sigma _2^2/(n_1\sigma _2^2+n_2\sigma _1^2)\) and \(c_2=n_2\sigma _1^2/(n_1\sigma _2^2+n_2\sigma _1^2)\).

We have

$$\begin{aligned}&P\{ | \hat{\mu }_2^{{\rm MLE}} - \mu _2 |< | {\bar{X}}_2 - \mu _2 | \} \nonumber \\&\quad = P\{ \hat{\mu }_2^{{\rm MLE}} + {\bar{X}}_2< 2 \mu _2 ,{\bar{X}}_2< \hat{\mu }_2^{{\rm MLE}} \} \nonumber \\&\quad = P \{ \hat{\mu }_2^{{\rm MLE}} + {\bar{X}}_2< 2 \mu _2, {\bar{X}}_1> {\bar{X}}_2 \} \nonumber \\&\quad \ge P_r \{ \hat{\mu }_2^{{\rm MLE}} - \mu _2< 0 , {\bar{X}}_1> {\bar{X}}_2 \} \; ( \text{ since } \; {\bar{X}}_2< \mu _2) \nonumber \\&\quad = P \{ c_1 ({\bar{X}}_1 - \mu _2) + c_2 ({\bar{X}}_2- \mu _2)< 0 , {\bar{X}}_1 > {\bar{X}}_2 \}. \end{aligned}$$
(20)

Next, we make the variable transformation

$$\begin{aligned} W_i= {\bar{X}}_i - \mu _2, \quad i=1,2. \end{aligned}$$

Then, \(W_1\) and \(W_2\) are distributed as \(N(-\varDelta , \tau _1^2)\) and \(N(0 , \tau _2^2)\), respectively, and \(W_1\) and \(W_2\) are mutually independent, where \(\varDelta = \mu _2- \mu _1\) and \(\tau _i^2= \sigma _i^2 /n_i, i=1,2\). Then, (20) becomes

$$\begin{aligned} P\{ c_1 W_1 + c_2 W_2 < 0 , W_1 > W_2 \}. \end{aligned}$$
(21)

We further make the variable transformation:

$$\begin{aligned} V_1 = W_1 - W_2, \quad V_2 = (\tau _2^2/ \tau _1^2) W_1+ W_2. \end{aligned}$$

Then, \(V_1\) and \(V_2\) are mutually independent and

$$\begin{aligned} V_1 \sim N(-\varDelta , \tau _1^2 + \tau _2^2) \quad \text{ and } \quad V_2 \sim N( -(\tau _2^2/ \tau _1^2)\varDelta , \tau _2^2(\tau _1^2+\tau _2^2)/\tau _1^2). \end{aligned}$$

Noting that

$$\begin{aligned} W_1=\frac{\tau _1^2(V_1+V_2)}{\tau _1^2+\tau _2^2} \quad \text{ and }\quad W_2= \frac{\tau _1^2V_2-\tau _2^2V_1}{\tau _1^2+\tau _2^2}, \end{aligned}$$

and denoting the p.d.f. of \(V_1\) by \(g(\cdot )\), (21) becomes

$$\begin{aligned}&P \{(c_1\tau _1^2-c_2\tau _2^2)V_1+ \tau _1^2V_2 <0, V_1 >0 \} \\&\quad = \int _0 ^\infty \varPhi \biggl ( \frac{((c_2\tau _2^2-c_1\tau _1^2)v_1+ \tau _2^2\varDelta }{\tau _1\tau _2\sqrt{\tau _1^2+\tau _2^2} } \biggr ) g(v_1 ) dv_1\\&\quad \ge 1/2, \end{aligned}$$

since \(c_2\tau _2^2-c_1\tau _1^2= 0\) and \(\varDelta \ge 0\). Thus, we have

$$\begin{aligned} {{\rm MPN}}_{\mu _2}(\hat{\mu }_2^{{\rm MLE}}, {\bar{X}}_2) \ge 1/2, \end{aligned}$$

with strict inequality for \(\mu _2 > \mu _1\). This completes the proof.

The analogous result for \(\hat{\mu }_1^{{\rm MLE}}\) is Pitman closer to \(\mu _1\) than \({\bar{X}}_1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YT., Shinozaki, N. & Strawderman, W.E. Pitman closeness domination in predictive density estimation for two-ordered normal means under \(\alpha\)-divergence loss. Jpn J Stat Data Sci 3, 1–21 (2020). https://doi.org/10.1007/s42081-019-00043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-019-00043-1

Keywords

Navigation