Skip to main content
Log in

Application of the bootstrap method for change points analysis in generalized linear models

  • Original Paper
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

In this paper, we focus on the construction methods of the prediction model, estimation methods of the change point locations, and the confidence intervals for the generalized linear model with piecewise different coefficients. As a standard approach for multiple change point analysis, the application of the hierarchical splitting algorithm is widely used. However, the hierarchical splitting algorithm has a high risk in that the standard error of the change point estimators become large and, therefore, the prediction accuracy of the estimated model decreases. To deal with this problem, we consider the application of a bootstrap method based on the hierarchical splitting algorithm. Through simulation studies, we compare the algorithms in terms of the prediction accuracy of the estimated model, bias and variance of the change point estimators, and the accuracy of the confidence intervals of the change points. From the result, we confirmed the utility of the bootstrap-based methods for change point analysis, especially the increased prediction accuracy of the obtained model, decreased standard error of the change point estimators, and construction of better confidence intervals depending on the situation. We also present the results of a simple example to demonstrate the utility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agresti, A. (2013). Categorical Data Analysis (3rd ed.). Hoboken, New Jersey: Wiley.

    MATH  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov, F. Csáki (Eds.)proceedings of the 2nd International Symposium on Information Theory (pp. 267-281). Budapest.

  • Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18, 1–22.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    MathSciNet  MATH  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. (1984). Classification and Regression Trees. California: Wadsworth.

    MATH  Google Scholar 

  • Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society Series B, 37, 149–192.

    MathSciNet  MATH  Google Scholar 

  • Chen, J., & Gupta, A. K. (1997). Testing and locating variance changepoints with application to stock prices. Journal of the American Statistical Association, 92, 739–747.

    Article  MathSciNet  Google Scholar 

  • Chen, J., & Gupta, A. K. (2012). Parametric Statistical Change Point Analysis (2nd ed.). New York: Birkhäuser.

    Book  Google Scholar 

  • Csörgő, M., & Horváth, L. (1997). Limit Theorems in Change-Point Analysis. New York: John Wiley & Sons.

    MATH  Google Scholar 

  • Davis, R. A., Lee, T. C. M., & Rodriguez-Yam, G. A. (2006). Structural break estimation for nonstationary time series models. Journal of the American Statistical Association, 101, 223–239.

    Article  MathSciNet  Google Scholar 

  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, Florida: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  • Fox, J. (2015). Applied Regression Analysis and Generalized Linear Models (3rd ed.). Thousand Oaks: Sage Publicatons.

    Google Scholar 

  • Gurevich, G., & Vexler, A. (2005). Change point problems in the model of logistic regression. Journal of Statistical Planning and Inference, 131, 313–331.

    Article  MathSciNet  Google Scholar 

  • Hawkins, D. M. (1977). Testing a sequence of observations for a shift in location. Journal of the American Statistical Association, 72, 180–186.

    Article  MathSciNet  Google Scholar 

  • Hawkins, D. M. (2001). Fitting multiple change-point models to data. Computational Statistics & Data Analysis, 37, 323–341.

    Article  MathSciNet  Google Scholar 

  • Holbert, D. (1982). A Bayesian analysis of a switching linear model. Journal of Econometrics, 19, 77–87.

    Article  Google Scholar 

  • Inclán, C. (1993). Detection of multiple changes of variance using posterior odds. Journal of Business and Economic Statistics, 11, 289–300.

    Google Scholar 

  • James, B. J., James, K. L., & Siegmund, D. (1987). Tests for a change-point. Biometrika, 74, 71–84.

    Article  MathSciNet  Google Scholar 

  • Kim, H. (1994). Tests for a change-point in linear regression. IMS Lecture Notes-Monograph Series, 23, 170–176.

    Article  MathSciNet  Google Scholar 

  • Kim, H., & Siegmund, D. (1989). The likelihood ratio test for a change-point in simple linear regression. Biometrika, 76, 409–423.

    Article  MathSciNet  Google Scholar 

  • Küchenhoff, H., & Carroll, R. J. (1997). Segmented regression with errors in predictors: semi-parametric and parametric methods. Statistics in Medicine, 16, 169–188.

    Article  Google Scholar 

  • Liu, F. T., Ting, K. M., Yu, Y., & Zhou, Z. H. (2008). Spectrum of variable-random trees. Journal of Artificial Intelligence Research, 32, 355–384.

    Article  Google Scholar 

  • Lu, Q., Lund, R., & Lee, T. C. M. (2010). An mdl approach to the climate segmentation problem. The Annals of Applied Statistics, 4, 299–319.

    Article  MathSciNet  Google Scholar 

  • Quandt, R. E. (1958). The estimation of parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical Association, 53, 873–880.

    Article  MathSciNet  Google Scholar 

  • Quandt, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of the American Statistical Association, 55, 324–330.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. (2007). Information and Complexity in Statistical Modeling. New York: Springer.

    MATH  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  Google Scholar 

  • Smith, P. L. (1979). Splines as a useful and convenient statistical tool. The American Statistician, 33, 57–62.

    Google Scholar 

  • Stasinopoulos, D. M., & Rigby, R. A. (1992). Detecting break points in generalised linear models. Computational Statistics & Data Analysis, 13, 461–471.

    Article  Google Scholar 

  • Ulm, K. (1991). A statistical method for assessing a threshold in epidemiological studies. Statistics in Medicine, 10, 341–349.

    Article  Google Scholar 

  • Worsley, K. J. (1979). On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association, 74, 365–367.

    MathSciNet  MATH  Google Scholar 

  • Wu, Y. (2008). Simultaneous change point analysis and variable selection in a regression problem. Journal of Multivariate Analysis, 99, 2154–2171.

    Article  MathSciNet  Google Scholar 

  • Zhou, Z. H. (2012). Ensemble Methods Foundations and Algorithms. Boca Raton: Chapman and Hall/CRC Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asanao Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimokawa, A., Miyaoka, E. Application of the bootstrap method for change points analysis in generalized linear models. Jpn J Stat Data Sci 1, 413–433 (2018). https://doi.org/10.1007/s42081-018-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-018-0023-5

Keywords

Navigation