Skip to main content
Log in

Influence of ENSO Events on the Agulhas Leakage Region

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

This study explores the subsurface oceanic response to the El Niño Southern Oscillation (ENSO) in the southern tropical Indian Ocean and Agulhas leakage region. The subsurface temperature and salinity responses of the southern tropical Indian Ocean and Agulhas leakage are studied using Argo float data. In addition, AVISO satellite-derived sea surface height (SSH) data is used to examine the propagation of an ENSO signal across the Indian Ocean to the Agulhas leakage region and its impact on eddy propagation within the leakage region. During the peak of an ENSO event, the Indian Ocean basin is anomalously warm up to 500 m depth in response to El Niño, but anomalously cool in response to La Niña. Sea surface salinity is anomalously fresh for both events in the eastern and western Indian Ocean basins, but the subsurface salinity signal during El Niño is anomalously saline to about 150 m in both basins. The subsurface signals last approximately 1 year (2 years) after the peak of ENSO in the eastern (western) Indian Ocean basin. The subsurface signal in the Agulhas leakage region is anomalously warm 2 years after El Niño and anomalously cool 2 years after La Niña. Westward propagation of SSH anomalies across the Indian Ocean basin is evident at 12°S and 25°S latitudes and it takes 2 years for the initial signal of Rossby waves to reach Agulhas leakage region after the peak of an ENSO event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beal LM, De Ruijter WPM, Biastoch A, Zahn R (2011) On the role of the Agulhas system in ocean circulation and climate. Nat 472:429–436. https://doi.org/10.1038/nature09983

    Article  Google Scholar 

  2. Behera S, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28(2). https://doi.org/10.1029/2000GL011451

  3. Bernal A, Latif M, Legutke S (2001) On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J Clim 15(11):1358–1368. https://doi.org/10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2

    Article  Google Scholar 

  4. Biastoch A, Durgadoo JV, Morrison AK, Van Sebille E, Weijer W, Griffies SM (2015) Atlantic multi-decadal oscillation covaries with Agulhas leakage. Nat Commun 2015(6). https://doi.org/10.1038/ncomms10082

  5. Cai W, Meyers G, Shi G (2005) Transmission of ENSO signal to the Indian Ocean. Geophys Res Lett 32. https://doi.org/10.1029/2004GL021736

  6. Chelton DB, Schlax MG, Samelson RM, De Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34(15). https://doi.org/10.1029/2007GL030812

  7. Dencausse G, Arhan M, Speich S (2010) Spatio-temporal characteristics of the Agulhas current retroflection. Deep-Sea Res 27:1393–1405. https://doi.org/10.1016/j.dsr.2010.07.004

    Google Scholar 

  8. De Ruijter WP, Ridderinkhof H, Schouten MW (2005) Variability of the Southwest Indian Ocean. Philos Trans R Soc Lond 363(1826):63–76. https://doi.org/10.1098/rsta.2004.1478

    Article  Google Scholar 

  9. Durgadoo JV, Ruhs S, Biastoch A, Boning CWB (2017) Indian Ocean sources of Agulhas leakage. J Geophys Res Oceans 122(4):3481–3499. https://doi.org/10.1002/2016jc012676

    Article  Google Scholar 

  10. England MH, Huang F (2005) On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J Clim 18(9):1435–1444. https://doi.org/10.1175/jcli3322.1

    Article  Google Scholar 

  11. Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean dipole. Deep-Sea Res 50(12):2263–2284. https://doi.org/10.1016/s0967-0645(03)00056-0

    Google Scholar 

  12. Gordon AL, Ma S, Olson DB, Hacker P, Field A, Talley LD, Baringer M (1997) Advection and diffusion of Indonesian throughflow water within the Indian Ocean south equatorial current. Geophys Res Lett 24(21):2573–2576. https://doi.org/10.1029/97gl01061

    Article  Google Scholar 

  13. Grunseich G, Subrahmanyam B, Murty VSN, Giese BS (2011) Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean. J Geophys Res Oceans 116(C11). https://doi.org/10.1029/2011jc007456

  14. Jury MR, Huang B (2004) The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep Sea Res I Oceanogr Res Pap 51(12):2123–2136. https://doi.org/10.1016/j.dsr.2004.06.005

    Article  Google Scholar 

  15. Killworth PD, Chelton DB, De Szoeke RA (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr 27(9):1946–1966. https://doi.org/10.1175/1520-0485(1997)027<1946:tsooat>2.0.co;2

    Article  Google Scholar 

  16. Klein SA, Soden BJ, Lau NC (1999) Remote Sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932. https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2

    Article  Google Scholar 

  17. Kug JS, Kang IS (2005) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801. https://doi.org/10.1175/jcli3660.1

    Article  Google Scholar 

  18. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13(24):4287–4309. https://doi.org/10.1175/1520-0442(2000)013%3C4287:ioeotv%3E2.0.co;2

    Article  Google Scholar 

  19. Le Bars DLB, Dijkstra HA, DeRuijter WPM (2013) Impact of the Indonesian Throughflow on Agulhas leakage. Ocean Sci Discuss 10:353–391. https://doi.org/10.5194/osd-10-353-2013

    Article  Google Scholar 

  20. Meyers G (1996) Variation of Indonesian Throughflow and the El Niño-southern oscillation. J Geophys Res Oceans 101(C5):12255–12263. https://doi.org/10.1029/95jc03729

    Article  Google Scholar 

  21. Paris ML, Subrahmanyam B (2018) Role of El Niño southern oscillation (ENSO) events on temperature and salinity variability in the Agulhas leakage region. Remote Sens 10(1):127. https://doi.org/10.3390/rs10010127

    Article  Google Scholar 

  22. Putrasahan D, Kirtman BP, Beal LM (2016) Modulation of SST interannual variability in the Agulhas leakage region associated with ENSO. J Clim 29(19):7089–7102. https://doi.org/10.1175/jcli-d-15-0172.1

    Article  Google Scholar 

  23. Qu T, Meyers G (2005) Seasonal characteristics of circulation in the southeastern tropical Indian Ocean. J Phys Oceanogr 35(2):255–267. https://doi.org/10.1175/jpo-2682.1

    Article  Google Scholar 

  24. Quartly GD, Srokosz MA (2004) Eddies in the southern Mozambique Channel. Deep Sea Res II Top Stud Oceanogr 51(1–3):69–83. https://doi.org/10.1016/j.dsr2.2003.03.001

    Article  Google Scholar 

  25. Ridderinkhof W, Le Bars D, Heydt AS, Ruijter WPM (2013) Dipoles of the south East Madagascar current. Geophys Res Lett 40(3):558–562. https://doi.org/10.1002/grl.50157

    Article  Google Scholar 

  26. Ruijter WD, Biastoch A, Drijfhout SS, Lutjeharms JRE, Matano RP, Pichevin T, Weijer (1999) Indian-Atlantic interocean exchange: dynamics, estimation and impact. J Geophys Res Oceans 104:20885–20910. https://doi.org/10.1029/1998jc900099

    Article  Google Scholar 

  27. Schouten MW, De Ruijter WP, Van Leeuwen PJ (2002) Upstream control of Agulhas ring shedding. J Geophys Res Oceans 107(C8):3109. https://doi.org/10.1029/2001jc000804

    Article  Google Scholar 

  28. Snedecor GWC, William G (1989) Statistical methods. QA276 12:S6313

    Google Scholar 

  29. Sprintall J, Wijffels SE, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J Geophys Res Oceans 114(C7). https://doi.org/10.1029/2008jc005257

  30. Swart SS, Speich S, Ansorge GGJ, Gladysev S, Lutjeharms JRE (2008) Transport and variability of the Antarctic circumpolar current south of Africa. J Geophys Res Oceans 113(C09014). https://doi.org/10.1029/2005gl023271

  31. Tokinaga H, Tanimoto Y (2004) Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J Meteorol Soc Jpn 82(4):1007–1018. https://doi.org/10.2151/jmsj.2004.1007

    Article  Google Scholar 

  32. Wieners CE, De Ruijter WP, Ridderinkhof W, Von Der Heydt AS, Dijkstra HA (2016) Coherent tropical Indo-Pacific interannual climate variability. J Clim 29(11):4269–4291. https://doi.org/10.11785/jcli-d-15-0262.1

    Article  Google Scholar 

  33. Xie SP, Annamalai H, Schott FA, McCreary JP Jr (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15(8):864–878. https://doi.org/10.1175/1520-0442(2002)015%3C0864:samosi%3E2.0.co;2

    Article  Google Scholar 

  34. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on indo–western Pacific climate during the summer following El Niño. J Clim 22(3):730–747. https://doi.org/10.1175/2008jcli2544.1

    Article  Google Scholar 

  35. Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32(24). https://doi.org/10.1029/2005gl024327

Download references

Acknowledgements

The author, VSN Murty is thankful to the Director, CSIR-NIO for his keen interest and support for this collaborative research work. Argo floats temperature and salinity data is courtesy of the Asia Pacific Data Research Center (http://apdrc.soest.hawaii.edu/datadoc/Argo_iprc.php). The authors would like to thank the following data centers for providing the datasets used to conduct this study: the IPRC APDRC (http://apdrc.soest.hawaii.edu/projects/argo/) and NASA JPL PO.DAAC for providing SST data. The authors would like to thank the anonymous reviewers and the editor, whose comments significantly contributed to the improvement of this paper.

Funding

This work is supported by the ONR NASCar (Northern Arabian Sea Circulation-autonomous research) award #N00014-17-1-2468 awarded to BS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan L. Paris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, M.L., Subrahmanyam, B., Trott, C.B. et al. Influence of ENSO Events on the Agulhas Leakage Region. Remote Sens Earth Syst Sci 1, 79–88 (2018). https://doi.org/10.1007/s41976-018-0007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-018-0007-z

Keywords

Navigation