Skip to main content

Advertisement

Log in

Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Advanced energy storage systems hold critical significance in satisfying the ever-increasing global demand for energy. And as a viable and effective alternative to lithium-ion batteries that dominate the current energy market, Zn-based batteries [i.e. Zn-ion batteries (ZIBs) and Zn-air batteries (ZABs)] have attracted extensive research efforts. Zn metal possesses many advantages because of its high theoretical capacity, its inexpensiveness and its good safety characteristic, and in recent years, tremendous efforts have been carried out to accelerate the development of ZIBs and ZABs with various electrode materials and electrocatalysts being proposed and investigated. In addition, with advances in characterization techniques, the underlying reaction mechanisms of these materials are also being elucidated. Therefore, this review will provide a comprehensive summary of the latest progress in various electrode materials adopted in the current ZIBs and ZABs along with corresponding mechanisms. Specifically, Mn- and V-containing cathode materials for ZIBs and associated reaction mechanisms will be thoroughly discussed, and emerging cathodes such as Prussian blue analogues, NASICON-type nanostructures and organic compounds will be presented. In terms of ZABs, this review will discuss three major types of electrocatalysts, including noble metals, heteroatom-doped carbons and transition metal oxides/sulphides/phosphides/nitrides. In addition, as a critical factor in the performance of Zn-based batteries, challenges encountered by the current Zn anodes and strategies developed to tackle these issues will be discussed as well. Finally, a short summary including the current progress and future perspectives of ZIBs and ZABs will be provided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013)

    Article  CAS  Google Scholar 

  2. Wagner, F.T., Lakshmanan, B., Mathias, M.F.: Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010)

    Article  CAS  Google Scholar 

  3. Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)

    Article  CAS  Google Scholar 

  4. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  CAS  Google Scholar 

  6. Rahman, M.A., Wang, X., Wen, C.: High energy density metal–air batteries: a review. J. Electrochem. Soc. 160, A1759–A1771 (2013)

    Article  CAS  Google Scholar 

  7. Ren, X., Wu, Y.: A low-overpotential potassium-oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 135, 2923–2926 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Hartmann, P., Bender, C.L., Vračar, M., et al.: A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Hu, E., Yang, X.Q.: Rejuvenating zinc batteries. Nat. Mater. 17, 480–481 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Kundu, D., Adams, B.D., Duffort, V., et al.: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016)

    Article  CAS  Google Scholar 

  12. Parker, J.F., Chervin, C.N., Pala, I.R., et al.: Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017)

    Article  PubMed  Google Scholar 

  14. Canepa, P., Sai Gautam, G., Hannah, D.C., et al.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Cai, X., Lai, L., Lin, J., et al.: Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design. Mater. Horiz. 4, 945–976 (2017)

    Article  CAS  Google Scholar 

  16. Fang, G., Zhou, J., Pan, A., et al.: Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018)

    Article  CAS  Google Scholar 

  17. Fu, J., Cano, Z.P., Park, M.G., et al.: Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017)

    Article  CAS  Google Scholar 

  18. Wang, Z.L., Xu, D., Xu, J.J., et al.: Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746–7786 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Gu, P., Zheng, M., Zhao, Q., et al.: Rechargeable zinc-air batteries: a promising way to green energy. J. Mater. Chem. A 5, 7651–7666 (2017)

    Article  CAS  Google Scholar 

  20. Cao, R., Lee, J.S., Liu, M., et al.: Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816–829 (2012)

    Article  CAS  Google Scholar 

  21. Chen, X., Zhou, Z., Karahan, H.E., et al.: Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 14, 1801929 (2018)

    Article  CAS  Google Scholar 

  22. Cheng, F., Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Dai, H.: Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Ko, J.S., Sassin, M.B., Parker, J.F., et al.: Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustain. Energy Fuels 2, 626–636 (2018)

    Article  CAS  Google Scholar 

  25. Song, M., Tan, H., Chao, D., et al.: Recent advances in zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018)

    Article  CAS  Google Scholar 

  26. Yang, D., Zhang, L., Yan, X., et al.: Recent progress in oxygen electrocatalysts for zinc-air batteries. Small Methods 1, 1700209 (2017)

    Article  CAS  Google Scholar 

  27. Li, W., Wang, K., Cheng, S., et al.: A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018)

    Article  Google Scholar 

  28. Xu, C., Li, B., Du, H., et al.: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124, 957–959 (2012)

    Article  Google Scholar 

  29. Lei, W., Deng, Y.P., Li, G., et al.: Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries. ACS Catal. 8, 2464–2472 (2018)

    Article  CAS  Google Scholar 

  30. Lee, J.S., Tai Kim, S., Cao, R., et al.: Metal-air batteries with high energy density: Li-air versus zn-air. Adv. Energy Mater. 1, 34–50 (2011)

    Article  CAS  Google Scholar 

  31. Cheng, F.Y., Chen, J., Gou, X.L., et al.: High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17, 2753–2756 (2005)

    Article  CAS  Google Scholar 

  32. Zhang, K., Han, X., Hu, Z., et al.: Nanostructured mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015)

    Article  PubMed  Google Scholar 

  33. Alfaruqi, M.H., Gim, J., Kim, S., et al.: A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015)

    Article  CAS  Google Scholar 

  34. Lee, B., Lee, H.R., Kim, H., et al.: Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015)

    Article  CAS  Google Scholar 

  35. Alfaruqi, M.H., Islam, S., Gim, J., et al.: A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 650, 64–68 (2016)

    Article  CAS  Google Scholar 

  36. Kim, S.H., Oh, S.M.: Degradation mechanism of layered MnO2 Cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72, 150–158 (1998)

    Article  CAS  Google Scholar 

  37. Lee, J., Ju, J.B., Cho, W.I., et al.: Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013)

    Article  CAS  Google Scholar 

  38. Wu, B., Zhang, G., Yan, M., et al.: Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery. Small 14, 1703850 (2018)

    Article  CAS  Google Scholar 

  39. Zhang, B., Liu, Y., Wu, X., et al.: An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50, 1209–1211 (2014)

    Article  CAS  Google Scholar 

  40. Zhang, N., Cheng, F., Liu, Y., et al.: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Islam, S., Alfaruqi, M.H., Mathew, V., et al.: Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5, 23299–23309 (2017)

    Article  CAS  Google Scholar 

  42. Zhang, N., Cheng, F., Liu, J., et al.: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alfaruqi, M.H., Islam, S., Putro, D.Y., et al.: Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018)

    Article  CAS  Google Scholar 

  44. Huang, J., Wang, Z., Hou, M., et al.: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nam, K.W., Kim, S., Lee, S., et al.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Kim, S., Nam, K.W., Lee, S., et al.: Direct observation of an anomalous spinel-to-layered phase transition mediated by crystal water intercalation. Angew. Chem. Int. Ed. 127, 15309–15314 (2015)

    Article  Google Scholar 

  47. Hao, J., Mou, J., Zhang, J., et al.: electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018)

    Article  CAS  Google Scholar 

  48. Sun, W., Wang, F., Hou, S., et al.: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Pan, H., Shao, Y., Yan, P., et al.: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016)

    Article  CAS  Google Scholar 

  50. Xu, C., Chiang, S.W., Ma, J., et al.: Investigation on zinc ion storage in alpha manganese dioxide for zinc ion battery by electrochemical impedance spectrum. J. Electrochem. Soc. 160, A93–A97 (2013)

    Article  CAS  Google Scholar 

  51. Lee, B., Yoon, C.S., Lee, H.R., et al.: Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alfaruqi, M.H., Mathew, V., Gim, J., et al.: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015)

    Article  CAS  Google Scholar 

  53. Ma, L., Chen, S., Pei, Z., et al.: Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 12, 8597–8605 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Z., Mo, F., Li, H., et al.: Advances in flexible and wearable energy-storage textiles. Small Methods 2, 1800124 (2018)

    Article  CAS  Google Scholar 

  55. Zhao, T., Zhang, G., Zhou, F., et al.: Toward Tailorable zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design. Small 14, 1802320 (2018)

    Article  CAS  Google Scholar 

  56. Zhang, Q., Zhou, Z., Pan, Z., et al.: All-metal–organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device. Adv. Sci. 5, 1801462 (2018)

    Article  CAS  Google Scholar 

  57. Li, C., Zhang, Q., Sun, J., et al.: High-performance quasi-solid-state flexible aqueous rechargeable Ag-Zn battery based on metal-organic framework-derived Ag nanowires. ACS Energy Lett. 3, 2761–2768 (2018)

    Article  CAS  Google Scholar 

  58. Wang, Z., Ruan, Z., Liu, Z., et al.: A Flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6, 8549–8557 (2018)

    Article  CAS  Google Scholar 

  59. Li, H., Han, C., Huang, Y., et al.: An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018)

    Article  CAS  Google Scholar 

  60. Zhang, N., Dong, Y., Jia, M., et al.: Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018)

    Article  CAS  Google Scholar 

  61. Zhou, J., Shan, L., Wu, Z., et al.: Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54, 4457–4460 (2018)

    Article  CAS  Google Scholar 

  62. Liu, Q., Tan, G., Wang, P., et al.: Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy 36, 197–205 (2017)

    Article  CAS  Google Scholar 

  63. He, G., Li, L., Manthiram, A.: VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. J. Mater. Chem. A 3, 14750–14758 (2015)

    Article  CAS  Google Scholar 

  64. Nethravathi, C., Rajamathi, C.R., Rajamathi, M., et al.: N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces 5, 2708–2714 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. Pei, C., Xiong, F., Sheng, J., et al.: VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9, 17060–17066 (2017)

    Article  CAS  PubMed  Google Scholar 

  66. Chao, D., Zhu, C., Xia, X., et al.: Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. Ding, J., Du, Z., Gu, L., et al.: Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30, 1800762 (2018)

    Article  CAS  Google Scholar 

  68. Dai, X., Wan, F., Zhang, L., et al.: Freestanding graphene/VO2 composite films for highly stable aqueous Zn-Ion batteries with superior rate performance. Energy Storage Mater. 17, 143–150 (2019)

    Article  Google Scholar 

  69. Chao, D., Zhu, C., Song, M., et al.: A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018)

    Article  CAS  Google Scholar 

  70. Sambandam, B., Soundharrajan, V., Kim, S., et al.: Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A 6, 3850–3856 (2018)

    Article  CAS  Google Scholar 

  71. Xia, C., Guo, J., Lei, Y., et al.: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018)

    Article  CAS  Google Scholar 

  72. Xia, C., Guo, J., Li, P., et al.: Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018)

    Article  CAS  Google Scholar 

  73. Cai, Y., Liu, F., Luo, Z., et al.: Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018)

    Article  Google Scholar 

  74. Yang, Y., Tang, Y., Fang, G., et al.: Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018)

    Article  CAS  Google Scholar 

  75. Tang, B., Fang, G., Zhou, J., et al.: Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018)

    Article  CAS  Google Scholar 

  76. Shan, L., Yang, Y., Zhang, W., et al.: Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.008

    Article  Google Scholar 

  77. Soundharrajan, V., Sambandam, B., Kim, S., et al.: Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable zn-ion batteries as cathodes. Nano Lett. 18, 2402–2410 (2018)

    Article  CAS  PubMed  Google Scholar 

  78. He, P., Zhang, G., Liao, X., et al.: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018)

    Article  CAS  Google Scholar 

  79. Guo, X., Fang, G., Zhang, W., et al.: Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 8, 1801819 (2018)

    Article  CAS  Google Scholar 

  80. Hu, P., Zhu, T., Wang, X., et al.: Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Peng, Z., Wei, Q., Tan, S., et al.: Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54, 4041–4044 (2018)

    Article  CAS  Google Scholar 

  82. He, P., Quan, Y., Xu, X., et al.: High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13, 1702551 (2017)

    Article  CAS  Google Scholar 

  83. Pang, Q., Sun, C., Yu, Y., et al.: H2V3O8 Nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8, 1800144 (2018)

    Article  CAS  Google Scholar 

  84. Ming, F., Liang, H., Lei, Y., et al.: Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3, 2602–2609 (2018)

    Article  CAS  Google Scholar 

  85. Li, H., Zhai, T., He, P., et al.: Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. J. Mater. Chem. 21, 1780–1787 (2011)

    Article  CAS  Google Scholar 

  86. Yan, M., He, P., Chen, Y., et al.: Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018)

    Article  CAS  Google Scholar 

  87. Wei, T., Li, Q., Yang, G., et al.: High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim. Acta 287, 60–67 (2018)

    Article  CAS  Google Scholar 

  88. Wang, F., Sun, W., Shadike, Z., et al.: How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018)

    Article  CAS  Google Scholar 

  89. Wan, F., Zhang, L., Dai, X., et al.: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Paolella, A., Faure, C., Timoshevskii, V., et al.: A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919–18932 (2017)

    Article  CAS  Google Scholar 

  91. Wu, X., Luo, Y., Sun, M., et al.: Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117–123 (2015)

    Article  CAS  Google Scholar 

  92. Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011)

    Article  CAS  PubMed  Google Scholar 

  93. Padigi, P., Thiebes, J., Swan, M., et al.: Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim. Acta 166, 32–39 (2015)

    Article  CAS  Google Scholar 

  94. Su, D., McDonagh, A., Qiao, S.Z., et al.: High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017)

    Article  CAS  Google Scholar 

  95. Zhang, L., Chen, L., Zhou, X., et al.: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015)

    Article  CAS  Google Scholar 

  96. Chae, M.S., Heo, J.W., Kwak, H.H., et al.: Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017)

    Article  CAS  Google Scholar 

  97. Trócoli, R., La Mantia, F.: An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481–485 (2015)

    Article  CAS  PubMed  Google Scholar 

  98. Kasiri, G., Trócoli, R., Bani Hashemi, A., et al.: An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016)

    Article  CAS  Google Scholar 

  99. Renman, V., Ojwang, D.O., Valvo, M., et al.: Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction. J. Power Sources 369, 146–153 (2017)

    Article  CAS  Google Scholar 

  100. Hou, Z., Zhang, X., Li, X., et al.: Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017)

    Article  CAS  Google Scholar 

  101. Wang, L.P., Wang, P.F., Wang, T.S., et al.: Prussian Blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J. Power Sources 355, 18–22 (2017)

    Article  CAS  Google Scholar 

  102. Rui, X., Sun, W., Wu, C., et al.: An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015)

    Article  CAS  PubMed  Google Scholar 

  103. Rui, X., Yan, Q., Skyllas-Kazacos, M., et al.: Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J. Power Sources 258, 19–38 (2014)

    Article  CAS  Google Scholar 

  104. Tan, H., Xu, L., Geng, H., et al.: Nanostructured Li3V2(PO4)3 cathodes. Small 14, 1800567 (2018)

    Article  CAS  Google Scholar 

  105. Li, G., Yang, Z., Jiang, Y., et al.: towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016)

    Article  CAS  Google Scholar 

  106. Islam, S., Alfaruqi, M.H., Putro, D.Y., et al.: Pyrosynthesis of Na3V2(PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries. Chemsuschem 11, 2239–2247 (2018)

    Article  CAS  PubMed  Google Scholar 

  107. Liu, W., Hao, J., Xu, C., et al.: Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 53, 6872–6874 (2017)

    Article  CAS  Google Scholar 

  108. Cheng, Y., Luo, L., Zhong, L., et al.: Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 8, 13673–13677 (2016)

    Article  CAS  PubMed  Google Scholar 

  109. He, P., Yan, M., Zhang, G., et al.: Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017)

    Article  CAS  Google Scholar 

  110. Ma, L., Chen, S., Li, H., et al.: Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11, 2521–2530 (2018)

    Article  CAS  Google Scholar 

  111. Zeng, Y., Lai, Z., Han, Y., et al.: Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30, 1802396 (2018)

    Article  CAS  Google Scholar 

  112. Kundu, D., Oberholzer, P., Glaros, C., et al.: Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30, 3874–3881 (2018)

    Article  CAS  Google Scholar 

  113. Ma, Y., Xie, X., Lv, R., et al.: Nanostructured polyaniline-cellulose papers for solid-state flexible aqueous Zn-ion battery. ACS Sustain. Chem. Eng. 6, 8697–8703 (2018)

    Article  CAS  Google Scholar 

  114. Zhao, Q., Huang, W., Luo, Z., et al.: High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liang, Y., Jing, Y., Gheytani, S., et al.: Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. Jiang, B., Xu, C., Wu, C., et al.: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017)

    Article  CAS  Google Scholar 

  117. Li, H., Liu, Z., Liang, G., et al.: Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12, 3140–3148 (2018)

    Article  CAS  PubMed  Google Scholar 

  118. Wu, X., Xiang, Y., Peng, Q., et al.: Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997 (2017)

    Article  CAS  Google Scholar 

  119. Kundu, D., Hosseini Vajargah, S., Wan, L., et al.: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018)

    Article  CAS  Google Scholar 

  120. Alfaruqi, M.H., Mathew, V., Song, J., et al.: Electrochemical zinc intercalation in lithium vanadium oxide: a Fe3Mo3C zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017)

    Article  CAS  Google Scholar 

  121. Guo, S., Zhang, S., Su, D., et al.: Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 135, 13879–13884 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. Chung, D.Y., Jun, S.W., Yoon, G., et al.: Highly durable and active ptfe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Bu, L., Guo, S., Zhang, X., et al.: Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, L., Tang, Z., Yan, W., et al.: Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power Sources 343, 458–466 (2017)

    Article  CAS  Google Scholar 

  125. Stamenkovic, V.R., Fowler, B., Mun, B.S., et al.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)

    Article  CAS  PubMed  Google Scholar 

  126. Huang, X., Zhao, Z., Cao, L., et al.: High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015)

    Article  CAS  PubMed  Google Scholar 

  127. Hu, S., Goenaga, G., Melton, C., et al.: PtCo/CoOx nanocomposites: bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B 182, 286–296 (2016)

    Article  CAS  Google Scholar 

  128. Cui, Z., Li, Y., Fu, G., Li, X., et al.: Robust Fe3Mo3C supported IrMn clusters as highly efficient bifunctional air electrode for metal-air battery. Adv. Mater. 29, 1702385 (2017)

    Article  CAS  Google Scholar 

  129. Cui, Z., Fu, G., Li, Y., et al.: Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem. Int. Ed. 129, 10033–10037 (2017)

    Article  Google Scholar 

  130. Wang, K., Tang, Z., Wu, W., et al.: Nanocomposites CoPt-x/diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: diatomite boosted the catalytic activity and durability. Electrochim. Acta 284, 119–127 (2018)

    Article  CAS  Google Scholar 

  131. You, T.H., Hu, C.C.: Designing binary Ru-Sn oxides with optimized performances for the air electrode of rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 10, 10064–10075 (2018)

    Article  CAS  PubMed  Google Scholar 

  132. Hu, S., Han, T., Lin, C., et al.: Enhanced electrocatalysis via 3D graphene aerogel engineered with a silver nanowire network for ultrahigh-rate zinc-air batteries. Adv. Funct. Mater. 27, 1700041 (2017)

    Article  CAS  Google Scholar 

  133. Li, B., Geng, D., Lee, X.S., et al.: Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-Air batteries. Chem. Commun. 51, 8841–8844 (2015)

    Article  CAS  Google Scholar 

  134. Lu, X., Yim, W.L., Suryanto, B.H.R., et al.: Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137, 2901–2907 (2015)

    Article  CAS  PubMed  Google Scholar 

  135. Wu, M., Wang, Y., Wei, Z., et al.: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 6, 10918–10925 (2018)

    Article  CAS  Google Scholar 

  136. Liu, S., Wang, M., Sun, X., et al.: Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 30, 1704898 (2018)

    Article  CAS  Google Scholar 

  137. Wang, L., Wang, Y., Wu, M., et al.: Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 14, 1800737 (2018)

    Article  CAS  Google Scholar 

  138. Hang, C., Zhang, J., Zhu, J., et al.: In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 8, 1703539 (2018)

    Article  CAS  Google Scholar 

  139. An, T., Ge, X., Tham, N.N., et al.: Facile one-pot synthesis of CoFe alloy nanoparticles decorated N-doped carbon for high-performance rechargeable zinc-air battery stacks. ACS Sustain. Chem. Eng. 6, 7743–7751 (2018)

    Article  CAS  Google Scholar 

  140. Su, C.Y., Cheng, H., Li, W., et al.: Atomic modulation of FeCo–nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 7, 1602420 (2017)

    Article  CAS  Google Scholar 

  141. Tang, C., Wang, B., Wang, H.F., et al.: Defect engineering toward Atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 29, 1703185 (2017)

    Article  CAS  Google Scholar 

  142. Chen, S., Cheng, J., Ma, L., et al.: Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. Nanoscale 10, 10412–10419 (2018)

    Article  CAS  PubMed  Google Scholar 

  143. Guan, C., Sumboja, A., Zang, W., et al.: Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 16, 243–250 (2019)

    Article  Google Scholar 

  144. Li, S., Cheng, C., Zhao, X., et al.: Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem. Int. Ed. 57, 1856–1862 (2018)

    Article  CAS  Google Scholar 

  145. Yang, L., Shi, L., Wang, D., et al.: Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50, 691–698 (2018)

    Article  CAS  Google Scholar 

  146. Han, S., Hu, X., Wang, J., et al.: Novel route to Fe-based cathode as an efficient bifunctional catalysts for rechargeable Zn-air battery. Adv. Energy Mater. 8, 1800955 (2018)

    Article  CAS  Google Scholar 

  147. Niu, W., Yang, Y.: Amorphous MOF introduced N-doped graphene: an efficient and versatile electrocatalyst for zinc-air battery and water splitting. ACS Appl. Energy Mater. 1, 2440–2445 (2018)

    Article  CAS  Google Scholar 

  148. Chen, G., Zhang, J., Wang, F., et al.: Cobalt-based metal–organic framework nanoarrays as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eur. J. (2018). https://doi.org/10.1002/chem.201804339

    Article  PubMed  Google Scholar 

  149. Chen, Y.N., Guo, Y., Cui, H., et al.: Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6, 9716–9722 (2018)

    Article  CAS  Google Scholar 

  150. Zhang, M., Dai, Q., Zheng, H., et al.: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018)

    Article  CAS  Google Scholar 

  151. Yang, W., Zhang, Y., Liu, X., et al.: In situ formed Fe-N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn-air battery. Chem. Commun. 53, 12934–12937 (2017)

    Article  CAS  Google Scholar 

  152. Jin, H., Zhou, H., Li, W., et al.: In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 6, 20093–20099 (2018)

    Article  CAS  Google Scholar 

  153. Ma, L., Chen, S., Pei, Z., et al.: Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949–1958 (2018)

    Article  CAS  PubMed  Google Scholar 

  154. Niu, W., Pakhira, S., Marcus, K., et al.: Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc-air battery. Adv. Energy Mater. 8, 1800480 (2018)

    Article  CAS  Google Scholar 

  155. Bu, Y., Gwon, O., Nam, G., et al.: A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594–11601 (2017)

    Article  CAS  PubMed  Google Scholar 

  156. Xu, N., Nie, Q., Wei, Y., et al.: Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc-air fuel cells and rechargeable batteries. Sustain. Energy Fuels 2, 91–95 (2018)

    Article  CAS  Google Scholar 

  157. Wang, Y., Fu, J., Zhang, Y., et al.: Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. Nanoscale 9, 15865–15872 (2017)

    Article  CAS  PubMed  Google Scholar 

  158. Liu, S., Zhang, X., Wang, G., et al.: High-efficiency Co/CoxSy@S, N-codoped porous carbon electrocatalysts fabricated from controllably grown sulfur- and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 9, 34269–34278 (2017)

    Article  CAS  PubMed  Google Scholar 

  159. Niu, W., Li, Z., Marcus, K., et al.: Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries. Adv. Energy Mater. 8, 1701642 (2018)

    Article  CAS  Google Scholar 

  160. Li, Y., Zhou, W., Dong, J., et al.: Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries. Nanoscale 10, 2649–2657 (2018)

    Article  CAS  PubMed  Google Scholar 

  161. Chen, X., Liu, B., Zhong, C., et al.: Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 7, 1700779 (2017)

    Article  CAS  Google Scholar 

  162. Li, Y., Zhong, C., Liu, J., et al.: Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 30, 1703657 (2018)

    Article  CAS  Google Scholar 

  163. Chen, X., Zhong, C., Liu, B., et al.: Atomic layer Co3O4 nanosheets: the key to knittable Zn-air batteries. Small 14, 1702987 (2018)

    Article  CAS  Google Scholar 

  164. Guan, C., Sumboja, A., Wu, H., et al.: Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017)

    Article  CAS  Google Scholar 

  165. Wang, Q., Miao, H., Sun, S., et al.: One-pot synthesis of Co3O4/Ag nanoparticles supported on N-doped graphene as efficient bifunctional oxygen catalysts for flexible rechargeable zinc-air batteries. Chem. Eur. J. 24, 14816–14823 (2018)

    Article  CAS  PubMed  Google Scholar 

  166. Li, X., Dong, F., Xu, N., et al.: Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 10, 15591–15601 (2018)

    Article  CAS  PubMed  Google Scholar 

  167. Da, P., Wu, M., Qiu, K., et al.: Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. Chem. Eng. Sci. 194, 127–133 (2019)

    Article  CAS  Google Scholar 

  168. Cheng, Y., Liao, F., Shen, W., et al.: Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale 9, 18977–18982 (2017)

    Article  CAS  PubMed  Google Scholar 

  169. Li, H., Li, Q., Wen, P., et al.: Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 (2018)

    Article  CAS  Google Scholar 

  170. Qin, X., Wang, Z., Han, J., et al.: Fe-doped CoP nanosheet arrays: an efficient bifunctional catalyst for zinc-air batteries. Chem. Commun. 54, 7693–7696 (2018)

    Article  CAS  Google Scholar 

  171. Ahn, S.H., Manthiram, A.: Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries. Small 13, 1702068 (2017)

    Article  CAS  Google Scholar 

  172. Peng, S., Han, X., Li, L., et al.: Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Energy Mater. 8, 1800612 (2018)

    Article  CAS  Google Scholar 

  173. Moni, P., Hyun, S., Vignesh, A., et al.: Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries. Chem. Commun. 53, 7836–7839 (2017)

    Article  CAS  Google Scholar 

  174. Guo, X., Zheng, T., Ji, G., et al.: Core/shell design of efficient electrocatalysts based on NiCo2O4 nanowires and NiMn LDH nanosheets for rechargeable zinc-air batteries. J. Mater. Chem. A 6, 10243–10252 (2018)

    Article  CAS  Google Scholar 

  175. Wu, M., Wei, Q., Zhang, G., et al.: Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv. Energy Mater. 8, 1801836 (2018)

    Article  CAS  Google Scholar 

  176. Han, X., Wu, X., Zhong, C., et al.: NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017)

    Article  CAS  Google Scholar 

  177. Liu, W., Zhang, J., Bai, Z., et al.: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable zn-air battery. Adv. Funct. Mater. 28, 1706675 (2018)

    Article  CAS  Google Scholar 

  178. Yu, M., Wang, Z., Hou, C., et al.: Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29, 1602868 (2017)

    Article  CAS  Google Scholar 

  179. Wang, Q., Shang, L., Shi, R., et al.: NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7, 1700467 (2017)

    Article  CAS  Google Scholar 

  180. Li, H.B., Yu, M.H., Lu, X.H., et al.: Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 745–749 (2014)

    Article  CAS  PubMed  Google Scholar 

  181. Wei, L., Karahan, H.E., Zhai, S., et al.: Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29, 1701410 (2017)

    Article  CAS  Google Scholar 

  182. Fan, Y., Ida, S., Staykov, A., et al.: Ni-Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 13, 1700099 (2017)

    Article  CAS  Google Scholar 

  183. Anandhababu, G., Abbas, S.C., Lv, J., et al.: Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Trans. 46, 1803–1810 (2017)

    Article  CAS  PubMed  Google Scholar 

  184. Yu, Q., Wu, C., Xu, J., et al.: Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon 128, 46–53 (2018)

    Article  CAS  Google Scholar 

  185. Wang, M., Liu, S., Xu, N., et al.: Active Fe-Nx sites in carbon nanosheets as oxygen reduction electrocatalyst for flexible all-solid-state zinc-air batteries. Adv. Sustain. Syst. 1, 1700085 (2017)

    Article  CAS  Google Scholar 

  186. Zhao, W., Xu, T., Li, T., et al.: Amorphous iron(III)-borate nanolattices as multifunctional electrodes for self-driven overall water splitting and rechargeable zinc-air battery. Small 14, 1802829 (2018)

    Article  CAS  Google Scholar 

  187. Wang, M., Qian, T., Liu, S., et al.: Unprecedented activity of bifunctional electrocatalyst for high power density aqueous zinc-air batteries. ACS Appl. Mater. Interfaces 9, 21216–21224 (2017)

    Article  CAS  PubMed  Google Scholar 

  188. Siahrostami, S., Tripković, V., Lundgaard, K.T., et al.: First principles investigation of zinc-anode dissolution in zinc-air batteries. Phys. Chem. Chem. Phys. 15, 6416–6421 (2013)

    Article  CAS  PubMed  Google Scholar 

  189. Wu, Y., Zhang, Y., Ma, Y., et al.: Ion-sieving carbon nanoshells for deeply rechargeable Zn-based aqueous batteries. Adv. Energy Mater. 8, 1802470 (2018)

    Article  CAS  Google Scholar 

  190. Zhao, K., Wang, C., Yu, Y., et al.: Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5, 1800848 (2018)

    Article  CAS  Google Scholar 

  191. Wu, X., Xing, Z., Zhao, Y., et al.: Insert Zn nanoparticles into the 3D porous carbon ultrathin films as a superior anode material for lithium ion battery. Part. Part. Syst. Char. 35, 1700355 (2018)

    Article  CAS  Google Scholar 

  192. Yan, Y., Zhang, Y., Wu, Y., et al.: A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries. ACS Appl. Energy Mater. 1, 6345–6351 (2018)

    Article  CAS  Google Scholar 

  193. Chen, P., Wu, Y., Zhang, Y., et al.: A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. J. Mater. Chem. A 6, 21933–21940 (2018)

    Article  CAS  Google Scholar 

  194. Gupta, T., Kim, A., Phadke, S., et al.: Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate. J. Power Sources 305, 22–29 (2016)

    Article  CAS  Google Scholar 

  195. Parker, J.F., Chervin, C.N., Nelson, E.S., et al.: Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7, 1117–1124 (2014)

    Article  CAS  Google Scholar 

  196. Yi, J., Liang, P., Liu, X., et al.: Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ. Sci. 11, 3075–3095 (2018)

    Article  CAS  Google Scholar 

  197. Li, W., Wang, K., Zhou, M., et al.: Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10, 22059–22066 (2018)

    Article  CAS  PubMed  Google Scholar 

  198. Li, H., Xu, C., Han, C., et al.: Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162, A1439–A1444 (2015)

    Article  CAS  Google Scholar 

  199. Kang, L., Cui, M., Jiang, F., et al.: Nanoporous CaCO3 coatings enabled uniform zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018)

    Article  CAS  Google Scholar 

  200. Schmid, M., Willert-Porada, M.: Zinc particles coated with bismuth oxide based glasses as anode material for zinc air batteries with improved electrical rechargeability. Electrochim. Acta 260, 246–253 (2018)

    Article  CAS  Google Scholar 

  201. Michlik, T., Schmid, M., Rosin, A., et al.: Mechanical coating of zinc particles with Bi2O3-Li2O-ZnO glasses as anode material for rechargeable zinc-based batteries. Batteries 4, 12 (2018)

    Article  CAS  Google Scholar 

  202. Li, P., Jin, Z., Xiao, D.: Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Mater. 12, 232–240 (2018)

    Article  Google Scholar 

  203. Stock, D., Dongmo, S., Damtew, D., et al.: Design strategy for zinc anodes with enhanced utilization and retention: electrodeposited zinc oxide on carbon mesh protected by ionomeric layers. ACS Appl. Energy Mater. 1, 5579–5588 (2018)

    CAS  Google Scholar 

  204. Zhang, Y., Wu, Y., Ding, H., et al.: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy 53, 666–674 (2018)

    Article  CAS  Google Scholar 

  205. Li, M., Meng, J., Li, Q., et al.: Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 28, 1802016 (2018)

    Article  CAS  Google Scholar 

  206. Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)

    Article  CAS  PubMed  Google Scholar 

  207. Wang, F., Borodin, O., Gao, T., et al.: Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018)

    Article  CAS  PubMed  Google Scholar 

  208. Wang, Z., Hu, J., Han, L., et al.: A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019)

    Article  CAS  Google Scholar 

  209. Lee, B.S., Cui, S., Xing, X., et al.: Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10, 38928–38935 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Key R&D Program of China (Grant No. 2018YFB0905400), the National Natural Science Foundation of China (Grant No. 51622210, 51872277, 21606003 and 51802044), the DNL Cooperation Fund, CAS (DNL180310), the Fundamental Research Funds for Central Universities (WK3430000004) and the Opening Project of CAS Key Laboratory of Materials for Energy Conversion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhong Rui or Yan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Tan, H., Rui, X. et al. Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2, 395–427 (2019). https://doi.org/10.1007/s41918-019-00035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00035-5

Keywords

Navigation