Skip to main content

Advertisement

Log in

Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Currently, Fe-N-C materials are considered to be among the most important oxygen reduction reaction (ORR) catalysts, because they are potential substitutes for Pt-based catalysts and are therefore promising in the development of non-noble metal-based catalysts. However, challenges such as electron transfer kinetics still exist and need to be improved upon. From a chemical stand point, improvements can be made through the better understanding of mechanisms in Fe-N-C-based ORR catalysis along with a deeper understanding of the chemical origin of active sites on Fe-N-C catalyst surfaces. Based on these, this comprehensive review will focus on the energy conversion, transformation kinetics and electron transfer of the ORR process as catalyzed by Fe-N-C catalysts. And by taking these and other relevant analytical results for Fe-N-C materials into consideration, primary strategies in the improvement in Fe-N-C catalyst activity will be presented.

Graphical Abstract

As the promising Pt substrate for oxygen reduction catalysis, the Fe-N-C materials are active toward the four-electron reduction of O2 to H2O. This review focuses on the profound understanding of heterogeneous oxygen reduction reaction on Fe-N-C materials from the following aspects: (1) thermodynamics of energy conversion in ORR processes, (2) kinetics of ORR processes based on Fe-N-C catalysts, (3) the textural features of Fe-N-C and analytic results known as far, (4) fundamental principle for Fe-N-C materials synthesis and (5) practical application for fuel cell and metal–air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Part a adapted with permission from Ref. [3]; Copyright 2004 American Chemical Society. Part b adapted with permission from Ref. [11]; Copyright 2012 Royal Society of Chemistry.)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Part a, b and c adapted with permission from Ref. [35]; Copyright 2013 American Chemical Society.)

Fig. 6
Fig. 7

(Part a adapted with permission from Ref. [47]; Copyright 2009 American Chemical Society. Part b, c and d adapted with permission from Ref. [50]; Copyright 2018 John Wiley and Sons.)

Fig. 8

(Part a, b, c, d, e and f adapted with permission from Ref. [60]; Copyright 2016 American Chemical Society.)

Fig. 9

(Part a, b and c adapted with permission from Ref. [14]; Copyright 2015 American Association for the Advancement of Science. Part d, e and f adapted with permission from Ref. [67]; Copyright 2016 John Wiley and Sons.)

Fig. 10

(Part a adapted with permission from Ref. [48]; Copyright 2017 Elsevier. Part b adapted with permission from Ref. [72]; Copyright 2016 American Chemical Society. Parts c and d adapted with permission from Ref. [39]; Copyright 2016 Nature Publishing Group.)

Fig. 11

(Part a adapted with permission from Ref. [37]; Copyright 2018 Nature Publishing Group. Part b adapted with permission from Ref. [80]; Copyright 2017 American Chemical Society. Parts c and d adapted with permission from Ref. [48]; Copyright 2017 Elsevier.)

Fig. 12

(Part a adapted with permission from Ref. [48]; Copyright 2017 Elsevier. Part b adapted with permission from Ref. [41]; Copyright 2014 American Chemical Society. Part c adapted with permission from Ref. [6]; Copyright 2016 American Chemical Society. Part d adapted with permission from Ref. [104]; Copyright 2015 American Chemical Society.)

Fig. 13

(Part a adapted with permission from Ref. [115]; Copyright 2016 John Wiley and Sons. Part b adapted with permission from Ref. [116]; Copyright 2017 American Chemical Society. Part c adapted with permission from Ref. [76]; Copyright 2017 American Chemical Society. Part d adapted with permission from Ref. [56]; Copyright 2017 John Wiley and Sons.)

Fig. 14

(Part a adapted with permission from Ref. [57]; Copyright 2017 John Wiley and Sons. Part b adapted with permission from Ref. [126]; Copyright 2018 Royal Society of Chemistry. Part c adapted with permission from Ref. [73]; Copyright 2017 John Wiley and Sons.)

Fig. 15

(Part a adapted with permission from Ref. [128]; Copyright 2014 John Wiley and Sons. Part b adapted with permission from Ref. [65]; Copyright 2017 John Wiley and Sons.)

Fig. 16

(Part a adapted with permission from Ref. [144]. Part b adapted with permission from Ref. [107]; Copyright 2009 American Association for the Advancement of Science. Part c adapted with permission from Ref. [145]; Copyright 2018 John Wiley and Sons. Part d adapted with permission from Ref. [146]; Copyright 2011 Nature Publishing Group.)

Fig. 17

(Parts a and b adapted with permission from Ref. [152]; Copyright 2018 American Association for the Advancement of Science. Parts c and d adapted with permission from Ref. [161]; Copyright 2018 Elsevier. Part e adapted with permission from Ref. [94]; Copyright 2018 American Chemical Society. Part f adapted with permission from Ref. [162]; Copyright 2018 Royal Society of Chemistry.)

Similar content being viewed by others

References

  1. Wang, Y., Qiu, W., Song, E., et al.: Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Sci. Rev. 5, 327–341 (2018)

    Article  CAS  Google Scholar 

  2. Shao, M., Chang, Q., Dodelet, J.P., et al.: Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)

    Article  CAS  Google Scholar 

  4. Wang, Y.J., Zhao, N., Fang, B., et al.: Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015)

    Article  CAS  Google Scholar 

  5. Li, Y., Zhou, W., Wang, H., et al.: An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotech. 7, 394–400 (2012)

    Article  CAS  Google Scholar 

  6. Sa, Y.J., Seo, D.J., Woo, J., et al.: A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 138, 15046 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y., Jiang, H., Zhu, Y., et al.: Transition metals (Fe Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 4, 1694–1701 (2016)

    Article  CAS  Google Scholar 

  8. Li, J., Hou, P., Zhao, S., et al.: A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy Environ. Sci. 9, 3079–3084 (2016)

    Article  CAS  Google Scholar 

  9. Zhang, J., Dai, L.: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 5, 7244–7253 (2015)

    Article  CAS  Google Scholar 

  10. Tang, C., Zhang, Q.: Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater 29(13), 1703185 (2017)

    Article  CAS  Google Scholar 

  11. Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)

    Article  CAS  Google Scholar 

  12. Ren, G., Lu, X., Li, Y., Zhu, Y., et al.: Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 4118–4125 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Saha, B., Gupta, D., Abu-Omar, M.M., et al.: Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J. Catal. 299, 316–320 (2013)

    Article  CAS  Google Scholar 

  14. Deng, D., Chen, X., Yu, L., et al.: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, 1500462 (2015)

    Article  Google Scholar 

  15. Zhang, P., Chen, X.F., Lian, J.S., et al.: Structural selectivity of CO oxidation on Fe/N/C catalysts. J. Phys. Chem. C 116, 17572–17579 (2012)

    Article  CAS  Google Scholar 

  16. Liu, W., Zhang, L., Liu, X., et al.: Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Ju, W., Bagger, A., Hao, G.P., et al.: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huan, T.N., Ranjbar, N., Rousse, G., et al.: Electrochemical reduction of CO2 catalyzed by Fe–N–C materials: a structure-selectivity study. ACS Catal. 7, 1520–1525 (2017)

    Article  CAS  Google Scholar 

  19. Xu, S., Yu, D., Liao, S., et al.: Nitrogen-doped carbon supported iron oxide as efficient catalysts for chemoselective hydrogenation of nitroarenes. RSC Adv. 6, 96431–96435 (2016)

    Article  CAS  Google Scholar 

  20. Li, J., Jj, Zhang, Liu, H., et al.: Graphitic carbon nitride (g–C3N4)-derived Fe–N–C catalysts for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran. ChemistrySelect 2, 11062–11070 (2017)

    Article  CAS  Google Scholar 

  21. Nie, Y., Li, L., Wei, Z.: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Scofield, M.E., Liu, H., Wong, S.S.: A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. Raj, C.R., Samanta, A., Noh, S.H., et al.: Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4, 11156–11178 (2016)

    Article  CAS  Google Scholar 

  24. Xia, W., Mahmood, A., Liang, Z., et al.: Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55, 2650–2676 (2015)

    Article  CAS  Google Scholar 

  25. Xia, Z., An, L., Chen, P., et al.: Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv. Energy Mater. 6, 1600458 (2016)

    Article  CAS  Google Scholar 

  26. Wenling, G., Liuyong, H., Jing, L., et al.: Recent advancements in transition metal-nitrogen–carbon catalysts for oxygen reduction reaction. Electroanalysis 30, 1217–1228 (2018)

    Article  CAS  Google Scholar 

  27. Atkins, P.W., De Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2006)

    Google Scholar 

  28. Wan, K., Yu, Z., Li, X., et al.: pH Effect on electrochemistry of nitrogen-doped carbon catalyst for oxygen reduction reaction. ACS Catal. 5, 4325–4332 (2015)

    Article  CAS  Google Scholar 

  29. Muthukrishnan, A., Nabae, Y., Okajima, T., et al.: Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal. 5, 5194–5202 (2015)

    Article  CAS  Google Scholar 

  30. Damjanovic, A., Genshaw, M.A., Bockris, J.O.M.: Distinction between intermediates produced in main and side electrodic reactions. J. Chem. Phys. 45, 4057–4059 (1966)

    Article  CAS  Google Scholar 

  31. Muthukrishnan, A., Nabae, Y., Hayakawa, T., et al.: Fe-containing polyimide-based high-performance ORR catalysts in acidic medium: a kinetic approach to study the durability of catalysts. Catal. Sci. Technol. 5, 475–483 (2015)

    Article  CAS  Google Scholar 

  32. Wu, J., Zhang, D., Niwa, H., et al.: Enhancement in kinetics of the oxygen reduction reaction on a nitrogen-doped carbon catalyst by introduction of iron via electrochemical methods. Langmuir 31, 5529–5536 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Wu, K.H., Shi, W., Wang, D., et al.: In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe–N doped carbon catalyst. Chem. Mater. 29, 4649–4653 (2017)

    Article  CAS  Google Scholar 

  34. Nayak, S., McPherson, I.J., Vincent, K.A.: Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 130, 1–5 (2018)

    Article  Google Scholar 

  35. Ramaswamy, N., Tylus, U., Jia, Q., et al.: Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135, 15443–15449 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Jia, Q., Ramaswamy, N., Hafiz, H., et al.: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Xu, H., Cheng, D., Cao, D., et al.: A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018)

    Article  CAS  Google Scholar 

  38. Zitolo, A., Goellner, V., Armel, V., et al.: Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. Malko, D., Kucernak, A., Lopes, T.: In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong, A., Zhu, X., Han, Z., et al.: Ordered hierarchically micro- and mesoporous Fe–Nx-embedded graphitic architectures as efficient electrocatalysts for oxygen reduction reaction. ACS Catal. 4, 1793–1800 (2014)

    Article  CAS  Google Scholar 

  41. Wang, Q., Zhou, Z., Lai, Y., et al.: Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136, 10882–10885 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. Kramm, U.I., Lefèvre, M., Larouche, N., et al.: Correlations between Mass Activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 136, 978–985 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. Lefèvre, M., Dodelet, J.P., Bertrand, P.: Molecular oxygen reduction in PEM Fuel Cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 106, 8705–8713 (2002)

    Article  CAS  Google Scholar 

  44. Lai, Q., Zheng, L., Liang, Y., et al.: Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017)

    Article  CAS  Google Scholar 

  45. Li, Q., Li, X., Zhang, G., et al.: Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. J. Am. Chem. Soc. 140, 15149–15152 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, Y., Zhang, B., Liu, X., et al.: Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014)

    Article  CAS  Google Scholar 

  47. Jaouen, F., Herranz, J., Lefèvre, M., et al.: Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 1, 1623–1639 (2009)

    Article  CAS  Google Scholar 

  48. Shen, H., Gracia-Espino, E., Ma, J., et al.: Atomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 35, 9–16 (2017)

    Article  CAS  Google Scholar 

  49. Jiang, W., Gu, L., Li, L., et al.: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Miao, Z., Wang, X., Tsai, M., et al.: Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv Energy Mater 8(24), 1801226 (2018)

    Article  CAS  Google Scholar 

  51. Qiao, B., Wang, A., Yang, X., et al.: Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Yi, J., Xu, R., Wu, Q., et al.: Atomically dispersed iron–nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 3, 883–889 (2018)

    Article  CAS  Google Scholar 

  53. Long, J., Gang, W., Rui, Z., et al.: From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 130, 8661–8665 (2018)

    Article  Google Scholar 

  54. Fei, H., Dong, J., Feng, Y., et al.: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018)

    Article  CAS  Google Scholar 

  55. Zhang, H., Hwang, S., Wang, M., et al.: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y., Ji, S., Wang, Y., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 129, 7041–7045 (2017)

    Article  Google Scholar 

  57. Choi, C.H., Choi, W.S., Kasian, O., et al.: Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe–N–C catalysts. Angew. Chem. Int. Ed. 56, 8809–8812 (2017)

    Article  CAS  Google Scholar 

  58. Herranz, J., Jaouen, F., Lefèvre, M., et al.: Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J. Phys. Chem. C 115, 16087–16097 (2011)

    Article  CAS  Google Scholar 

  59. Kramm, U.I., Herranz, J., Larouche, N., et al.: Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14, 11673–11688 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kramm, U.I., Herrmann-Geppert, I., Behrends, J., et al.: On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 138, 635–640 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. Liu, J.J.: Advanced electron microscopy of metal-support interactions in supported metal catalysts. Chemcatchem 3, 934–948 (2011)

    Article  CAS  Google Scholar 

  62. Gu, J., Cai, Z., Wang, D., et al.: Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano 10, 8746–8750 (2016)

    Article  CAS  PubMed  Google Scholar 

  63. Zhong, W., Chen, J., Zhang, P., et al.: Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance. J. Mater. Chem. A 5, 16605–16610 (2017)

    Article  CAS  Google Scholar 

  64. Tan, H., Li, Y., Jiang, X., et al.: Perfectly ordered mesoporous iron–itrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. Nano Energy 36, 286–294 (2017)

    Article  CAS  Google Scholar 

  65. Ahn, S.H., Yu, X., Manthiram, A.: “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater 29(26), 1606534 (2017)

    Article  CAS  Google Scholar 

  66. Chung, D.Y., Kim, M.J., Kang, N., et al.: Low-temperature and gram-scale synthesis of two-dimensional Fe–N–C carbon sheets for robust electrochemical oxygen reduction reaction. Chem. Mater. 29, 2890–2898 (2017)

    Article  CAS  Google Scholar 

  67. Ding, Y., Niu, Y., Yang, J., et al.: A metal-amino acid complex-derived bifunctional oxygen electrocatalyst for rechargeable Zinc–air batteries. Small 12, 5414–5421 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Kozuch, S., Martin, J.M.L.: Turning over definitions in catalytic cycles. ACS Catal. 2, 2787–2794 (2012)

    Article  CAS  Google Scholar 

  69. Cui, C., Gan, L., Heggen, M., et al.: Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. Li, M., Zhao, Z., Cheng, T., et al.: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. Mahmood, J., Li, F., Jung, S.M., Okyay, M.S., et al.: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 12, 441–446 (2017)

    Article  CAS  Google Scholar 

  72. Malko, D., Kucernak, A.R.J., Lopes, T.: Performance of Fe–N/C oxygen reduction electrocatalysts towards NO2 , NO, and NH2OH electroreduction-from fundamental insights into the active center to a new method for environmental nitrite destruction. J. Am. Chem. Soc. 138, 16056–16068 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Shen, H., Gracia-Espino, E., Ma, J., et al.: Synergistic effects between atomically dispersed Fe–N–C and C–S–C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 129, 13988–13992 (2017)

    Article  Google Scholar 

  74. Varnell, J.A., Sotiropoulos, J.S., Brown, T.M., et al.: Revealing the role of the metal in non-precious-metal catalysts for oxygen reduction via selective removal of Fe. ACS Energy Lett. 3, 823–828 (2018)

    Article  CAS  Google Scholar 

  75. Wu, G., More, K.L., Johnston, C.M., et al.: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. Ye, Y., Li, H., Cai, F., et al.: Two-dimensional mesoporous carbon doped with Fe–N active sites for efficient oxygen reduction. ACS Catal. 7, 7638–7646 (2017)

    Article  CAS  Google Scholar 

  77. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 146–157 (2017)

    Article  Google Scholar 

  78. Wang, Y., Yuan, H., Li, Y., et al.: Two-dimensional iron-phthalocyanine (Fe–Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale 7, 11633–11641 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Seo, M.H., Higgins, D., Jiang, G., et al.: Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. J. Mater. Chem. A 2, 19707–19716 (2014)

    Article  CAS  Google Scholar 

  80. Titov, A., Zapol, P., Kral, P., et al.: Catalytic Fe-xN sites in carbon nanotubes. J. Phys. Chem. C 113, 21629–21634 (2009)

    Article  CAS  Google Scholar 

  81. Liu, K., Wu, G., Wang, G.: Role of local carbon structure surrounding FeN4 Sites in boosting catalytic activity for oxygen reduction. J. Phys. Chem. C 121, 11319–11324 (2017)

    Article  CAS  Google Scholar 

  82. Yasuda, S., Furuya, A., Uchibori, Y., et al.: Iron–nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 26, 738–744 (2016)

    Article  CAS  Google Scholar 

  83. Song, P., Wang, Y., Pan, J., et al.: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. J. Power Sources 300, 279–284 (2015)

    Article  CAS  Google Scholar 

  84. Jaouen, F., Marcotte, S., Dodelet, J.P., et al.: Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J. Phys. Chem. B 107, 1376–1386 (2003)

    Article  CAS  Google Scholar 

  85. Zhu, C., Shi, Q., Xu, B.Z., et al.: Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater 8(29), 1801956 (2018)

    Article  CAS  Google Scholar 

  86. Hu, K., Tao, L., Liu, D., et al.: Sulfur-doped Fe/N/C nanosheets as highly efficient electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 19379–19385 (2016)

    Article  CAS  PubMed  Google Scholar 

  87. Kone, I., Xie, A., Tang, Y., et al.: Hierarchical porous carbon doped with iron–nitrogen–sulfur for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 9, 20963–20973 (2017)

    Article  CAS  PubMed  Google Scholar 

  88. Men, B., Sun, Y., Liu, J., et al.: Synergistically enhanced electrocatalytic activity of sandwich-like N-doped graphene/carbon nanosheets decorated by Fe and S for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 19533–19541 (2016)

    Article  CAS  PubMed  Google Scholar 

  89. Sasan, K., Kong, A., Wang, Y., et al.: From hemoglobin to porous N–S–Fe–doped carbon for efficient oxygen electroreduction. J. Phys. Chem. C 119, 13545–13550 (2015)

    Article  CAS  Google Scholar 

  90. Kwak, D.H., Han, S.B., Lee, Y.W., et al.: Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B Environ. 203, 889–898 (2017)

    Article  CAS  Google Scholar 

  91. Wang, Y.C., Lai, Y.J., Song, L., et al.: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem. Int. Ed. 127, 10045–10048 (2015)

    Article  Google Scholar 

  92. Sun, M., Davenport, D., Liu, H., et al.: Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 2527–2539 (2018)

    Article  CAS  Google Scholar 

  93. Zhang, J., Byeon, A., Lee, J.W.: Boron-doped carbon-iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide. Chem. Commun. 50, 6349–6352 (2014)

    Article  CAS  Google Scholar 

  94. Yuan, K., Sfaelou, S., Qiu, M., et al.: Synergetic contribution of boron and Fe-N-x species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. Acs Energy Lett. 3, 252–260 (2018)

    Article  CAS  Google Scholar 

  95. Fajrial, A.K., Saputro, A.G., Agusta, M.K., et al.: First principles study of oxygen molecule interaction with the graphitic active sites of a boron-doped pyrolyzed Fe–N–C catalyst. Phy. Chem. Chem. Phy. 19, 23497–23504 (2017)

    Article  CAS  Google Scholar 

  96. Chen, P., Zhou, T., Xing, L., et al.: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017)

    Article  CAS  Google Scholar 

  97. Kramm, U.I., Herrmann-Geppert, I., Fiechter, S., et al.: Effect of iron-carbide formation on the number of active sites in Fe–N–C catalysts for the oxygen reduction reaction in acidic media. J. Mater. Chem. A 2, 2663–2670 (2014)

    Article  CAS  Google Scholar 

  98. He, Z., Maurice, J.L., Gohier, A., et al.: Iron catalysts for the growth of carbon nanofibers: Fe, Fe3C or both? Chem. Mater. 23, 5379–5387 (2011)

    Article  CAS  Google Scholar 

  99. Fan, X., Peng, Z., Ye, R., et al.: M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015)

    Article  CAS  PubMed  Google Scholar 

  100. Hou, Y., Huang, T., Wen, Z., et al.: Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4, 1220–1225 (2014)

    Article  CAS  Google Scholar 

  101. Hu, Y., Jensen, J.O., Zhang, W., et al.: Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem. Int. Ed. 53, 3675–3679 (2014)

    Article  CAS  Google Scholar 

  102. Zhang, Z., Sun, J., Wang, F., et al.: Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 130, 9176–9181 (2018)

    Article  Google Scholar 

  103. Han, S., Hu, X., Wang, J., et al.: Novel route to Fe-based cathode as an efficient bifunctional catalysts for rechargeable Zn–air battery. Adv. Energy Mater. 8, 1800955 (2018)

    Article  CAS  Google Scholar 

  104. Ding, W., Li, L., Xiong, K., et al.: Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5414–5420 (2015)

    Article  CAS  PubMed  Google Scholar 

  105. Yang, L., Cheng, D., Xu, H., et al.: Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. PNAS 115, 6626–6631 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. Serov, A., Artyushkova, K., Atanassov, P.: Fe–N–C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014)

    Article  CAS  Google Scholar 

  107. Lefevre, M., Proietti, E., Jaouen, F., et al.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J., Lee, J., Choi, Y., et al.: Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon 75, 95–103 (2014)

    Article  CAS  Google Scholar 

  109. Jiao, Y., Han, D., Liu, L., et al.: Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem. Int. Ed. 54, 5727–5731 (2015)

    Article  CAS  Google Scholar 

  110. Wu, Z., Xu, X., Hu, B., et al.: Iron carbide nanoparticles encapsulated in mesoporous Fe–N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54, 8179–8183 (2015)

    Article  CAS  Google Scholar 

  111. Liu, D., Long, Y.: Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 7, 24063–24068 (2015)

    Article  CAS  PubMed  Google Scholar 

  112. Zhou, T., Zhou, Y., Ma, R., et al.: Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron-nitrogen-doped graphitic carbon spheres. J. Mater. Chem. A 5, 12243–12251 (2017)

    Article  CAS  Google Scholar 

  113. Liang, H.W., Wei, W., Wu, Z.-S., et al.: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013)

    Article  CAS  PubMed  Google Scholar 

  114. Kong, A., Dong, B., Zhu, X., et al.: Ordered mesoporous Fe-porphyrin-like architectures as excellent cathode materials for the oxygen reduction reaction in both alkaline and acidic media. Chemistry 19, 16170–16175 (2013)

    Article  CAS  PubMed  Google Scholar 

  115. Song, L., Wu, Z., Zhou, F., et al.: Sustainable hydrothermal carbonization synthesis of iron/nitrogen-doped carbon nanofiber aerogels as electrocatalysts for oxygen reduction. Small 12, 6398–6406 (2016)

    Article  CAS  PubMed  Google Scholar 

  116. Wang, B., Wang, X., Zou, J., et al.: Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 17, 2003–2009 (2017)

    Article  CAS  PubMed  Google Scholar 

  117. Ma, R., Zhou, Y., Hu, C., et al.: Post iron-doping of activated nitrogen-doped carbon spheres as a high-activity oxygen reduction electrocatalyst. Energy Storage Mater. 13, 142–150 (2018)

    Article  Google Scholar 

  118. Deng, Y., Dong, Y., Wang, G., et al.: Well-defined ZIF-derived Fe–N co-doped carbon nanoframes as efficient oxygen reduction catalysts. ACS Appl. Mater. Interfaces 9, 9699–9709 (2017)

    Article  CAS  PubMed  Google Scholar 

  119. Liu, T., Li, M., Jiao, C., et al.: Design and synthesis of integrally structured Ni3N nanosheets/carbon microfibers/Ni3 N nanosheets for efficient full water splitting catalysis. J. Mater. Chem. A 5, 9377–9390 (2017)

    Article  CAS  Google Scholar 

  120. Li, J., Chen, S., Li, W., et al.: A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 15504–15509 (2018)

    Article  CAS  Google Scholar 

  121. Gewirth, A.A., Varnell, J.A., DiAscro, A.M.: Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 118, 2313–2339 (2018)

    Article  CAS  PubMed  Google Scholar 

  122. Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018)

    Article  CAS  Google Scholar 

  123. Zitolo, A., Ranjbar-Sahraie, N., Mineva, T., et al.: Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yin, P., Yao, T., Wu, Y., et al.: Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016)

    Article  CAS  Google Scholar 

  125. Hu, Z., Guo, Z., Zhang, Z., et al.: Bimetal zeolitic imidazolite framework-derived iron-, cobalt- and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Appl. Mater. Interfaces 10, 12651–12658 (2018)

    Article  CAS  PubMed  Google Scholar 

  126. Guan, Z., Zhang, X., Chen, W., et al.: Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst. Chem. Commun. (2018). https://doi.org/10.1039/c8cc05273e

    Article  Google Scholar 

  127. Guo, D., Shibuya, R., Akiba, C., et al.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016)

    Article  CAS  PubMed  Google Scholar 

  128. Liang, J., Zhou, R.F., Chen, X.M., et al.: Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 26, 6074–6079 (2014)

    Article  CAS  PubMed  Google Scholar 

  129. Yang, Z.X., Xia, Y.D., Mokaya, R.: Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates. Chem. Mater. 17, 4502–4508 (2005)

    Article  CAS  Google Scholar 

  130. Sheng, Z.H., Shao, L., Chen, J.J., et al.: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011)

    Article  CAS  PubMed  Google Scholar 

  131. Kundu, S., Nagaiah, T.C., Xia, W., et al.: Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113, 14302–14310 (2009)

    Article  CAS  Google Scholar 

  132. Nagaiah, T.C., Kundu, S., Bron, M., et al.: Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 12, 338–341 (2010)

    Article  CAS  Google Scholar 

  133. Liu, R., Wu, D., Feng, X., et al.: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 49, 2565–2569 (2010)

    Article  CAS  Google Scholar 

  134. Matter, P., Wang, E., Ozkan, U.: Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from SiO2- and MgO-supported metal particles. J. Catal. 243, 395–403 (2006)

    Article  CAS  Google Scholar 

  135. Mo, Z., Liao, S., Zheng, Y., et al.: Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media. Carbon 50, 2620–2627 (2012)

    Article  CAS  Google Scholar 

  136. Webster, S., Maultzsch, J., Thomsen, C., et al.: Raman characterization of nitrogen doped multiwalled carbon nanotubes. Nanotub. Devices 772, 129–134 (2003)

    CAS  Google Scholar 

  137. Van Dommele, S., Romero-Izquirdo, A., Brydson, R., et al.: Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 46, 138–148 (2008)

    Article  CAS  Google Scholar 

  138. Lin, L., Yang, Z.K., Jiang, F., et al.: Nonprecious bimetallic (Fe, Mo)-N/C catalyst for efficient oxygen reduction reaction. ACS Catal. 6, 4449–4454 (2016)

    Article  CAS  Google Scholar 

  139. Wang, J., Qiao, J., Baker, R., et al.: Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 42, 5768–5787 (2013)

    Article  CAS  Google Scholar 

  140. Zhou, T., Shao, R., Chen, S., et al.: A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 293, 946–975 (2015)

    Article  CAS  Google Scholar 

  141. O’Hayre, R., Cha, S.W., Colella, W., et al.: Fuel Cell Fundamentals. Wiley, New York (2016)

    Book  Google Scholar 

  142. Spendelow, J.S., Papageorgopoulos, D.C.: Progress in PEMFC MEA component R&D at the DOE fuel cell technologies program. Fuel Cells 11, 775–786 (2011)

    Article  CAS  Google Scholar 

  143. Gasteiger, H.A., Kocha, S.S., Sompalli, B., et al.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005)

    Article  CAS  Google Scholar 

  144. Milliken, J. Hydrogen, fuel cells and infrastructure technologies program, multi-year research, development and demonstration plan. US Department of Energy, Page 3.4–2 (2007). https://doi.org/10.2172/920934

  145. Liu, Q., Liu, X., Zheng, L., et al.: The solid-phase synthesis of an Fe–N–C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem. Int. Ed. 57, 1204–1208 (2018)

    Article  CAS  Google Scholar 

  146. Proietti, E., Jaouen, F., Lefevre, M., et al.: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011)

    Article  CAS  PubMed  Google Scholar 

  147. Yuan, S., Shui, L., Grabstanowicz, L., et al.: A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew. Chem. Int. Ed. 125, 8507–8511 (2013)

    Article  Google Scholar 

  148. Wang, J., Huang, Z., Liu, W., et al.: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017)

    Article  CAS  PubMed  Google Scholar 

  149. Fu, X., Zamani, P., Choi, J.Y., et al.: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 29, 1604456 (2017)

    Article  CAS  Google Scholar 

  150. Wu, Y., Wang, C., Wang, R., et al.: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces 10, 14602–14613 (2018)

    Article  CAS  PubMed  Google Scholar 

  151. Meng, F., Liu, K., Zhang, Y., et al.: Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn–air batteries. Small 14, 1703843 (2018)

    Article  CAS  Google Scholar 

  152. Ganesan, P., Prabu, M., Sanetuntikul, J., et al.: Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 5, 3625–3637 (2015)

    Article  CAS  Google Scholar 

  153. Shinde, S.S., Lee, C.H., Sami, A., et al.: Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11, 347–357 (2017)

    Article  CAS  PubMed  Google Scholar 

  154. Wang, R., Chen, Z., Hu, N., et al.: Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn–air batteries. ChemElectroChem 5, 1745–1763 (2018)

    Article  CAS  Google Scholar 

  155. Pan, J., Xu, Y.Y., Yang, H., et al.: Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 5, 1700691 (2018)

    Article  CAS  Google Scholar 

  156. Ma, L., Yu, T., Tzoganakis, E., et al.: Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8, 1800348 (2018)

    Article  CAS  Google Scholar 

  157. Huang, Y., Wang, Y., Tang, C., et al.: Atomic modulation and structure design. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803800

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li, Z., Yang, J., Xu, G., et al.: Non-precious cathode electrocatalyst for magnesium air fuel cells: activity and durability of iron-polyphthalocyanine absorbed on carbon black. J. Power Sources 242, 157–165 (2013)

    Article  CAS  Google Scholar 

  159. Shui, J., Karan, N.K., Balasubramanian, M., et al.: Fe/N/C composite in Li–O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J. Am. Chem. Soc. 134, 16654–16661 (2012)

    Article  CAS  PubMed  Google Scholar 

  160. Yu, L., Shen, Y., Huang, Y.: Fe–N–C catalyst modified graphene sponge as a cathode material for lithium–oxygen battery. J. Alloys. Compd. 595, 185–191 (2014)

    Article  CAS  Google Scholar 

  161. Wei, W., Shi, X., Gao, P., et al.: Well-elaborated, mechanochemically synthesized Fe-TPP subset of ZIF precursors (Fe-TPP = tetraphenylporphine iron) to atomically dispersed iron-nitrogen species for oxygen reduction reaction and Zn–air batteries. Nano Energy 52, 29–37 (2018)

    Article  CAS  Google Scholar 

  162. Wei, Q., Zhang, G., Yang, X., et al.: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 6, 4605–4610 (2018)

    Article  CAS  Google Scholar 

  163. Pan, Y., Liu, S., Sun, K., et al.: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew. Chem. Int. Ed. 57, 8614–8618 (2018)

    Article  CAS  Google Scholar 

  164. Jin, S.: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2, 1937–1938 (2017)

    Article  CAS  Google Scholar 

  165. Hu, B., Wu, Z., Chu, S., et al.: SiO2-protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 11, 2208–2215 (2018)

    Article  CAS  Google Scholar 

  166. Tian, N., Lu, B., Yang, X., et al.: Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 1, 54–83 (2018)

    Article  Google Scholar 

  167. Chenitz, R., Kramm, U.I., Lefevre, M., et al.: A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy Environ. Sci. 11, 365–382 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21471147) and the National Key Research and Development Program of China (2016YFB0101200). M. Yang appreciates the support from the Ningbo 3315 program. J. Wang would like to thank the financial support from the Science and Technology Commission of Shanghai Municipality (15520720400, 16DZ2260603) and the Equipment Research Program (6140721050215). Tiju Thomas would like to thank the Indian Institute of Technology, Madras and the Department of Science and Technology (DST, Government of India) for their financial support in the form of grants such as the Young Scientist Scheme (YSS/2015/001712) and the Centre Grant CHY1718383DSTXTPRA and SOL1819001DSTXHOCX. Tiju Thomas would also like to thank the Ministry of Electronics & Information Technology for their support and the Centre grant ELE1819353MEITENAK (in which he is a Center member). H. Shen would like to acknowledge the contributions made by Liu Yang at the Beijing Advanced Innovation Center for Soft Matter Science and Engineering at the Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiacheng Wang or Minghui Yang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Thomas, T., Rasaki, S.A. et al. Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochem. Energ. Rev. 2, 252–276 (2019). https://doi.org/10.1007/s41918-019-00030-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00030-w

Keywords

Navigation