Skip to main content

Advertisement

Log in

Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (PIBs) have recently attracted considerable attention in electrochemical energy storage applications due to abundant and widely distributed potassium resources and encouraging intercalation chemistries with graphite, the commercial anode of lithium-ion batteries. One main challenge in PIBs, however, is to develop suitable cathode materials to accommodate the large size of K+ ions with reasonable capacity, voltage, kinetics, cycle life, cost, etc. In this review, recent advancements of cathode materials for PIBs are reviewed, covering various fundamental aspects of PIBs, and various cathode materials in terms of synthesis, structure, and electrochemical performance, such as capacity, working potential, and K-storage mechanisms. Furthermore, strategies to improve the electrochemical performance of cathode materials through increasing crystallinity, using buffering and conducting matrixes, designing nanostructures, optimizing electrolytes, and selecting binders are summarized and discussed. Finally, challenges and prospects of these materials are provided to guide future development of cathode materials in PIBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Carmichael, R.S.: Physical Properties of Rocks and Minerals. CRC Press, Boca Raton (1989)

    Google Scholar 

  3. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  4. Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  5. Mao, J., Zhou, T., Zheng, Y., et al.: Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6, 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b

    Article  CAS  Google Scholar 

  6. Pramudita, J.C., Sehrawat, D., Goonetilleke, D., et al.: An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911

    Article  CAS  Google Scholar 

  7. Zou, X., Xiong, P., Zhao, J., et al.: Recent research progress in non-aqueous potassium-ion batteries. Phys. Chem. Chem. Phys. 19, 26495–26506 (2017). https://doi.org/10.1039/c7cp03852f

    Article  CAS  PubMed  Google Scholar 

  8. Wu, X., Leonard, D.P., Ji, X.: Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29, 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764

    Article  CAS  Google Scholar 

  9. Kubota, K., Dahbi, M., Hosaka, T., et al.: Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 18, 459–479 (2018). https://doi.org/10.1002/tcr.201700057

    Article  CAS  PubMed  Google Scholar 

  10. Eftekhari, A., Jian, Z., Ji, X.: Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404–4419 (2017). https://doi.org/10.1021/acsami.6b07989

    Article  CAS  PubMed  Google Scholar 

  11. Kim, H., Kim, J.C., Bianchini, M., et al.: Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018). https://doi.org/10.1002/aenm.201702384

    Article  CAS  Google Scholar 

  12. Ge, P., Fouletier, M.: Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30, 1172–1175 (1988). https://doi.org/10.1016/0167-2738(88)90351-7

    Article  Google Scholar 

  13. Stevens, D.A., Dahn, J.R.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001). https://doi.org/10.1149/1.1379565

    Article  CAS  Google Scholar 

  14. Jian, Z., Luo, W., Ji, X.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809

    Article  CAS  PubMed  Google Scholar 

  15. Marcus, Y.: Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 3-standard potentials of selected electrodes. Pure Appl. Chem. 57, 1129–1132 (2009). https://doi.org/10.1351/pac198557081129

    Article  Google Scholar 

  16. Komaba, S., Hasegawa, T., Dahbi, M., et al.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002

    Article  CAS  Google Scholar 

  17. McCargar, J.W., Neff, V.D.: Thermodynamics of mixed-valence intercalation reactions: the electrochemical reduction of Prussian blue. J. Phys. Chem. 92, 3598–3604 (1988). https://doi.org/10.1021/j100323a055

    Article  CAS  Google Scholar 

  18. Neff, V.D.: Some performance characteristics of a Prussian blue battery. J. Electrochem. Soc. 132, 1382–1384 (1985). https://doi.org/10.1149/1.2114121

    Article  CAS  Google Scholar 

  19. Honda, K., Hayashi, H.: Prussian blue containing nafion composite film as rechargeable battery. J. Electrochem. Soc. 134, 1330–1334 (1987). https://doi.org/10.1149/1.2100668

    Article  CAS  Google Scholar 

  20. Kaneko, M., Okada, T.: A secondary battery composed of multilayer Prussian Blue and its reaction characteristics. J. Electroanal. Chem. Interfacial Electrochem. 255, 45–52 (1988). https://doi.org/10.1016/0022-0728(88)80003-2

    Article  CAS  Google Scholar 

  21. Okoshi, M., Yamada, Y., Komaba, S., et al.: Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: acomparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, A54–A60 (2017). https://doi.org/10.1149/2.0211702jes

    Article  CAS  Google Scholar 

  22. Jian, Z., Xing, Z., Bommier, C., et al.: Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016). https://doi.org/10.1002/aenm.201501874

    Article  CAS  Google Scholar 

  23. Luo, W., Wan, J., Ozdemir, B., et al.: Potassium ion batteries with graphitic materials. Nano Lett. 15, 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, W., Mao, J., Li, S., et al.: Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185

    Article  CAS  PubMed  Google Scholar 

  25. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  26. Hautier, G., Jain, A., Ong, S.P., et al.: Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughputab initio calculations. Chem. Mater. 23, 3495–3508 (2011). https://doi.org/10.1021/cm200949v

    Article  CAS  Google Scholar 

  27. Liu, C., Neale, Z.G., Cao, G.: Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  28. Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013). https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  29. Yamada, A., Chung, S.C., Hinokuma, K.: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001). https://doi.org/10.1149/1.1348257

    Article  CAS  Google Scholar 

  30. Wu, X.Y., Sun, M.Y., Shen, Y.F., et al.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036

    Article  CAS  PubMed  Google Scholar 

  31. Wu, X., Cao, Y., Ai, X., et al.: A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013

    Article  CAS  Google Scholar 

  32. Lee, H., Kim, Y.I., Park, J.K., et al.: Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 48, 8416–8418 (2012). https://doi.org/10.1039/c2cc33771a

    Article  CAS  Google Scholar 

  33. Yabuuchi, N., Yoshida, H., Komaba, S.: Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 80, 716–719 (2012). https://doi.org/10.5796/electrochemistry.80.716

    Article  CAS  Google Scholar 

  34. Eftekhari, A.: Potassium secondary cell based on Prussian blue cathode. J. Power Sour 126, 221–228 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007

    Article  CAS  Google Scholar 

  35. Zhang, C., Xu, Y., Zhou, M., et al.: Potassium prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Func. Mater. 27, 1604307 (2017). https://doi.org/10.1002/adfm.201604307

    Article  CAS  Google Scholar 

  36. Pei, Y., Mu, C., Li, H., et al.: Low-cost K4Fe(CN)6 as a high-voltage cathode for potassium-ion batteries. Chemsuschem 11, 1285–1289 (2018). https://doi.org/10.1002/cssc.201800057

    Article  CAS  PubMed  Google Scholar 

  37. Liao, J., Hu, Q., Yu, Y., et al.: A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J. Mater. Chem. A 5, 19017–19024 (2017). https://doi.org/10.1039/c7ta05460b

    Article  CAS  Google Scholar 

  38. Su, D., McDonagh, A., Qiao, S.Z., et al.: High-capacity aqueous potassium-ion batteries for Large-Scale Energy Storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007

    Article  CAS  Google Scholar 

  39. Chong, S., Chen, Y., Zheng, Y., et al.: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 5, 22465–22471 (2017). https://doi.org/10.1039/c7ta08139a

    Article  CAS  Google Scholar 

  40. Padigi, P., Thiebes, J., Swan, M., et al.: Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim. Acta 166, 32–39 (2015). https://doi.org/10.1016/j.electacta.2015.03.084

    Article  CAS  Google Scholar 

  41. Shadike, Z., Shi, D.R., Wang, T., et al.: Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery. J. Mater. Chem. A 5, 6393–6398 (2017). https://doi.org/10.1039/c7ta00484b

    Article  CAS  Google Scholar 

  42. Bruce, P., Armstrong, A., Gitzendanner, R.: New intercalation compounds for lithium batteries: layered LiMnO2. J. Mater. Chem. 9, 193–198 (1999)

    Article  CAS  Google Scholar 

  43. Billaud, J., Clement, R.J., Armstrong, A.R., et al.: beta-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136, 17243–17248 (2014). https://doi.org/10.1021/ja509704t

    Article  CAS  PubMed  Google Scholar 

  44. Ma, X., Chen, H., Ceder, G.: Electrochemical properties of monoclinic NaMnO2. J. Electro. Soc. 158, A1307–A1312 (2011). https://doi.org/10.1149/2.035112jes

    Article  CAS  Google Scholar 

  45. Vaalma, C., Giffin, G.A., Buchholz, D., et al.: Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163, A1295–A1299 (2016). https://doi.org/10.1149/2.0921607jes

    Article  CAS  Google Scholar 

  46. Kim, H., Seo, D.H., Kim, J.C., et al.: Investigation of potassium storage in layered P3-Type K0.5MnO2 Cathode. Adv. Mater. 29, 1702480 (2017). https://doi.org/10.1002/adma.201702480

    Article  CAS  Google Scholar 

  47. Reed, J., Ceder, G., Van Der Ven, A.: Layered-to-spinel phase transition in LixMnO2 electrochem. Solid-State Lett. 4, A78–A81 (2001). https://doi.org/10.1149/1.1368896

    Article  CAS  Google Scholar 

  48. Ding, J.J., Zhou, Y.N., Sun, Q., et al.: Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim. Acta 87, 388–393 (2013). https://doi.org/10.1016/j.electacta.2012.09.058

    Article  CAS  Google Scholar 

  49. Rai, A.K., Anh, L.T., Gim, J., et al.: Electrochemical properties of NaxCoO2 (x ~ 0.71) cathode for rechargeable sodium-ion batteries. Ceram. Inter. 40, 2411–2417 (2014). https://doi.org/10.1016/j.ceramint.2013.08.013

    Article  CAS  Google Scholar 

  50. Kim, H., Kim, J.C., Bo, S.H., et al.: K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 7, 1700098 (2017). https://doi.org/10.1002/aenm.201700098

    Article  CAS  Google Scholar 

  51. Komaba, S., Yabuuchi, N., Nakayama, T., et al.: Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012). https://doi.org/10.1021/ic300357d

    Article  CAS  PubMed  Google Scholar 

  52. Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011). https://doi.org/10.1038/nmat2920

    Article  CAS  PubMed  Google Scholar 

  53. Croguennec, L., Pouillerie, C., Delmas, C.: NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: structural modifications. J. Electrochem. Soc. 147, 1314–1321 (2000). https://doi.org/10.1149/1.1393356

    Article  CAS  Google Scholar 

  54. Hironaka, Y., Kubota, K., Komaba, S.: P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 53, 3693–3696 (2017). https://doi.org/10.1039/c7cc00806f

    Article  CAS  Google Scholar 

  55. Deng, T., Fan, X., Luo, C., et al.: Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries. Nano Lett. 18, 1522–1529 (2018). https://doi.org/10.1021/acs.nanolett.7b05324

    Article  CAS  PubMed  Google Scholar 

  56. Mandal, S., Rojas, R.M., Amarilla, J.M., et al.: High temperature Co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 14, 1598–1605 (2002). https://doi.org/10.1021/cm011219v

    Article  CAS  Google Scholar 

  57. Armstrong, A.R., Robertson, A.D., Bruce, P.G.: Structural transformation on cycling layered Li (Mn1-yCoy)O2 cathode materials. Electrochim. Acta 45, 285–294 (1999). https://doi.org/10.1016/S0013-4686(99)00211-X

    Article  CAS  Google Scholar 

  58. Nikitina, V.A., Kuzovchikov, S.M., Fedotov, S.S., et al.: Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery. Electrochim. Acta 258, 814–824 (2017). https://doi.org/10.1016/j.electacta.2017.11.131

    Article  CAS  Google Scholar 

  59. Park, W.B., Han, S.C., Park, C., et al.: KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy Mater. 8, 1703099 (2018). https://doi.org/10.1002/aenm.201703099

    Article  CAS  Google Scholar 

  60. Lian, R., Wang, D., Ming, X., et al.: Phase transformation, ionic diffusion, and charge transfer mechanisms of KVOPO4 in potassium ion batteries: first-principles calculations. J. Mater. Chem. A 6, 16228–16234 (2018). https://doi.org/10.1039/c8ta06708b

    Article  CAS  Google Scholar 

  61. Chihara, K., Katogi, A., Kubota, K., et al.: KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017). https://doi.org/10.1039/c6cc10280h

    Article  CAS  Google Scholar 

  62. Lin, X., Huang, J., Tan, H., et al.: K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 16, 97–101 (2019). https://doi.org/10.1016/j.ensm.2018.04.026

    Article  Google Scholar 

  63. Deng, L., Niu, X., Ma, G., et al.: Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Fun. Mater 1800670 (2018). https://doi.org/10.1002/adfm.201800670

    Article  Google Scholar 

  64. Wu, X., Jian, Z., Li, Z., et al.: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54–57 (2017). https://doi.org/10.1016/j.elecom.2017.02.012

    Article  CAS  Google Scholar 

  65. Jiang, X., Zhang, T., Yang, L., et al.: A Fe/Mn-Based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries. ChemElectroChem 4, 2237–2242 (2017). https://doi.org/10.1002/celc.201700410

    Article  CAS  Google Scholar 

  66. Bie, X., Kubota, K., Hosaka, T., et al.: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017). https://doi.org/10.1039/c7ta00220c

    Article  CAS  Google Scholar 

  67. Xue, L., Li, Y., Gao, H., et al.: Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139(6), 2164–2167 (2017). https://doi.org/10.1021/jacs.6b12598

    Article  CAS  PubMed  Google Scholar 

  68. Wang, X., Xu, X., Niu, C., et al.: Earth abundant Fe/Mn-Based layered oxide Interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17(1), 544–550 (2017). https://doi.org/10.1021/acs.nanolett.6b04611

    Article  CAS  PubMed  Google Scholar 

  69. Deng, T., Fan, X., Chen, J., et al.: Layered P2-Type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries. Adv. Fun. Mater. 28, 1800219 (2018). https://doi.org/10.1002/adfm.201800219

    Article  CAS  Google Scholar 

  70. Liu, C., Luo, S., Huang, H., et al.: K0.67Ni0.17Co0.17Mn0.66O2: a cathode material for potassium-ion battery. Electrochem. Commun. 82, 150–154 (2017). https://doi.org/10.1016/j.elecom.2017.08.008

    Article  CAS  Google Scholar 

  71. Chen, Y., Luo, W., Carter, M., et al.: Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015). https://doi.org/10.1016/j.nanoen.2015.10.015

    Article  CAS  Google Scholar 

  72. Xing, Z., Jian, Z., Luo, W., et al.: A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Mater. 2, 63–68 (2016). https://doi.org/10.1016/j.ensm.2015.12.001

    Article  Google Scholar 

  73. Zhao, J., Yang, J., Sun, P., et al.: Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem. Commun. 86, 34–37 (2018). https://doi.org/10.1016/j.elecom.2017.11.009

    Article  CAS  Google Scholar 

  74. Jian, Z., Liang, Y., Rodríguez-Pérez, I.A., et al.: Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 71, 5–8 (2016). https://doi.org/10.1016/j.elecom.2016.07.011

    Article  CAS  Google Scholar 

  75. Zhao, Q., Wang, J., Lu, Y., et al.: Oxocarbon salts for fast rechargeable batteries. Angew. Chem. Int. Ed. 55, 12528–12532 (2016). https://doi.org/10.1002/anie.201607194

    Article  CAS  Google Scholar 

  76. Nokami, T., Matsuo, T., Inatomi, Y., et al.: Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 134, 19694–19700 (2012). https://doi.org/10.1021/ja306663g

    Article  CAS  PubMed  Google Scholar 

  77. Recham, N., Rousse, G., Sougrati, M.T., et al.: Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem. Mater. 24, 4363–4370 (2012). https://doi.org/10.1021/cm302428w

    Article  CAS  Google Scholar 

  78. Mathew, V., Kim, S., Kang, J., et al.: Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Mater. 6, e138–e138 (2014). https://doi.org/10.1038/am.2014.98

    Article  CAS  Google Scholar 

  79. Naveen, N., Park, W.B., Han, S.C., et al.: Reversible K+-insertion/deinsertion and concomitant Na+-redistribution in P’3-Na0.52CrO2 for high-performance potassium-ion battery cathodes. Chem. Mater. 30, 2049–2057 (2018). https://doi.org/10.1021/acs.chemmater.7b05329

    Article  CAS  Google Scholar 

  80. Sada, K., Senthilkumar, B., Barpanda, P.: Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries. Chem. Commun. 53, 8588–8591 (2017). https://doi.org/10.1039/c7cc02791e

    Article  CAS  Google Scholar 

  81. Silbernagel, B.G., Whittingham, M.S.: An NMR study of the alkali metal intercalation phase LixTiS2: relation to structure, thermodynamics, and iconicity. J. Chem. Phys. 64, 3670–3673 (1976). https://doi.org/10.1063/1.432731

    Article  CAS  Google Scholar 

  82. Silbernagel, B.G., Whittingham, M.S.: The physical properties of the NaxTiS2intercalation compounds: asynthetic and NMR study. Mater. Res. Bull. 11, 29–36 (1976). https://doi.org/10.1016/0025-5408(76)90210-5

    Article  CAS  Google Scholar 

  83. Tian, B., Tang, W., Leng, K., et al.: Phase transformations in TiS2 during K intercalation. ACS Energy Lett. 2, 1835–1840 (2017). https://doi.org/10.1021/acsenergylett.7b00529

    Article  CAS  Google Scholar 

  84. Wang, L., Zou, J., Chen, S., et al.: TiS2 as a high perfromance potasium ion battery cathode in ether-based electrolyte. Energy Storage Mater. 12, 216–222 (2018). https://doi.org/10.1016/j.ensm.2017.12.018

    Article  CAS  Google Scholar 

  85. Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563

    Article  CAS  PubMed  Google Scholar 

  86. Wessells, C.D., Peddada, S.V., Huggins, R.A., et al.: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011). https://doi.org/10.1021/nl203193q

    Article  CAS  PubMed  Google Scholar 

  87. Wang, J., Sun, X.: Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012). https://doi.org/10.1039/c1ee01263k

    Article  CAS  Google Scholar 

  88. Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.160

    Article  CAS  Google Scholar 

  89. Balogun, M.S., Luo, Y., Qiu, W., et al.: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091

    Article  CAS  Google Scholar 

  90. Li, X., Chen, Y., Huang, H., et al.: Electrospun carbon-based nanostructured electrodes for advanced energy storage-A review. Energy Storage Mater. 5, 58–92 (2016). https://doi.org/10.1016/j.ensm.2016.06.002

    Article  CAS  Google Scholar 

  91. Kang, E., Jung, Y.S., Kim, G.H., et al.: Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode viacarbon-coated mesoporous uniform pores with a simple self-assembly method. Adv. Fun. Mater. 21, 4349–4357 (2011). https://doi.org/10.1002/adfm.201101123

    Article  CAS  Google Scholar 

  92. Nossol, E., Zarbin, A.J.G.: Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Sol. Energy Mater. Sol. C. 109, 40–46 (2013). https://doi.org/10.1016/j.solmat.2012.10.006

    Article  CAS  Google Scholar 

  93. Zhu, Y.H., Yin, Y.B., Yang, X., et al.: Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 56, 7881–7885 (2017). https://doi.org/10.1002/anie.201702711

    Article  CAS  Google Scholar 

  94. Han, J., Li, G.N., Liu, F., et al.: Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 53, 1805–1808 (2017). https://doi.org/10.1039/c6cc10065a

    Article  CAS  Google Scholar 

  95. Nossol, E., Souza, V.H., Zarbin, A.J.: Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107–116 (2016). https://doi.org/10.1016/j.jcis.2016.05.056

    Article  CAS  PubMed  Google Scholar 

  96. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  97. Ji, L., Lin, Z., Alcoutlabi, M., et al.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682 (2011). https://doi.org/10.1039/c0ee00699h

    Article  CAS  Google Scholar 

  98. He, G., Nazar, L.F.: Crystallite size control of Prussian White analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017). https://doi.org/10.1021/acsenergylett.7b00179

    Article  CAS  Google Scholar 

  99. Neff, V.D.: Electrochemical oxidation and reduction of thin films of Prussian Blue. J. Electrochem. Soc. 125, 886–887 (1978)

    Article  CAS  Google Scholar 

  100. Schuppert, N.D., Mukherjee, S., Bates, A.M., et al.: Ex-situ X-ray diffraction analysis of electrode strain at TiO2 atomic layer deposition/α-MoO3 interface in a novel aqueous potassium ion battery. J. Power Sour 316, 160–169 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.064

    Article  CAS  Google Scholar 

  101. Zhong, C., Deng, Y., Hu, W., et al.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b

    Article  CAS  PubMed  Google Scholar 

  102. Leonard, D.P., Wei, Z., Chen, G., et al.: Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009

    Article  CAS  Google Scholar 

  103. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004)

    Article  CAS  PubMed  Google Scholar 

  104. Ma, J., Zhou, E., Fan, C., et al.: Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries. Chem. Commun. 54, 5578–5581 (2018). https://doi.org/10.1039/c8cc00802g

    Article  CAS  Google Scholar 

  105. Cho, E., Mun, J., Chae, O.B., et al.: Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem. Commun. 22, 1–3 (2012). https://doi.org/10.1016/j.elecom.2012.05.018

    Article  CAS  Google Scholar 

  106. Hu, Z., Liu, Q., Chou, S.L., et al.: Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 1700606 (2017). https://doi.org/10.1002/adma.201700606

    Article  CAS  Google Scholar 

  107. Moshkovich, M., Gofer, Y., Aurbach, D.: Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc. 148, E155–E167 (2001). https://doi.org/10.1149/1.1357316

    Article  CAS  Google Scholar 

  108. Komaba, S., Ishikawa, T., Yabuuchi, N., et al.: Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011). https://doi.org/10.1021/am200973k

    Article  CAS  PubMed  Google Scholar 

  109. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, J.N., Li, Q., Wang, Y., et al.: Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016

    Article  Google Scholar 

  111. Minato, T., Kawaura, H., Hirayama, M., et al.: Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements. J. Phys. Chem. C 120, 20082–20088 (2016). https://doi.org/10.1021/acs.jpcc.6b02523

    Article  CAS  Google Scholar 

  112. Cherkashinin, G., Nikolowski, K., Ehrenberg, H., et al.: The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Phys. Chem. Chem. Phys. 14, 12321–12331 (2012). https://doi.org/10.1039/c2cp41134b

    Article  CAS  PubMed  Google Scholar 

  113. Chen, M., Wang, W., Liang, X., et al.: Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy. Mater. 8, 1800171 (2018). https://doi.org/10.1002/aenm.201800171

    Article  CAS  Google Scholar 

  114. Wang, W., Zhou, J., Wang, Z., et al.: Short-range order in mesoporous carbon boosts potassuim-ion battery performance. Adv. Energy. Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648

    Article  CAS  Google Scholar 

  115. Wang, W., Jiang, B., Qian, C., et al.: Pistachion-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30, 1801812 (2018). https://doi.org/10.1002/adma.201801812

    Article  CAS  Google Scholar 

  116. Yang, C., Feng, J., Lv, F., et al.: Metallic graphene-Like VSe2 ultrathin nanosheets: superor potassium-ion storage and their working mechanism. Adv. Mater. 30, 1800036 (2018). https://doi.org/10.1002/adma.201800036

    Article  CAS  Google Scholar 

  117. Cao, B., Zhang, Q., Liu, H., et al.: Graphitic carbon nanocage as a stable and high power anode for pontassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149

    Article  Google Scholar 

  118. Lei, Y., Qin, L., Liu, R., et al.: Exploring stability of nonaqueous electrolytes for potassium-ion batteries. ACS Appl. Energy Mater. 1, 1828–1833 (2018). https://doi.org/10.1021/acsaem.8b00214

    Article  CAS  Google Scholar 

  119. Zhang, Q., Mao, J., Pang, W.K., et al.: Boosting the potassium storage performance of alloy-based anode materials viaelectrolyte salt chemistry. Adv. Energy Mater. 8, 1703288 (2018). https://doi.org/10.1002/aenm.201703288

    Article  CAS  Google Scholar 

  120. Zhang, W., Pang, W.K., Sencadas, V., et al.: Understanding high-energy-density Sn4P3anodes for potassium-ion batteries. Joule (2018). https://doi.org/10.1016/j.joule.2018.04.022

    Article  Google Scholar 

  121. Xiao, N., McCulloch, W.D., Wu, Y.: Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945

    Article  CAS  PubMed  Google Scholar 

  122. Liu, Y., Tai, Z., Zhou, T., et al.: An all-Integrated anode viainterlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29, 1703028 (2017). https://doi.org/10.1002/adma.201703028

    Article  CAS  Google Scholar 

  123. Kovalenko, I., Zdyrko, B., Magasinski, A., et al.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011). https://doi.org/10.1126/science.1209150

    Article  CAS  PubMed  Google Scholar 

  124. Obrovac, M.N., Chevrier, V.L.: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014). https://doi.org/10.1021/cr500207g

    Article  CAS  PubMed  Google Scholar 

  125. Zhu, Y.H., Yang, X., Bao, D., et al.: High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2, 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Australian Research Council (ARC) (FT150100109 and DP170102406) is gratefully acknowledged. Q.Z. and Z.J.W. acknowledge the China Scholarship Council (CSC) for their scholarships (Grant Nos. 201508420150 and 201706340049). The authors would also like to thank Dr. Tania Silver for performing critical revisions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Mao or Zaiping Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, Z., Zhang, S. et al. Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective. Electrochem. Energ. Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0023-y

Keywords

PACS

Navigation