Skip to main content

Advertisement

Log in

Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Rechargeable potassium-ion batteries (KIBs) are potential alternatives to lithium-ion batteries for application in large-scale energy storage systems due to their inexpensive and highly abundant resources. Recently, various anode materials have been investigated for use in KIBs, especially the traditional graphite anodes which have already been successfully applied in KIBs. In contrast, the appropriate cathode materials which are able to accommodate large K ions are urgently needed. In this review, a comprehensive summary of the latest advancements in cathode materials for non-aqueous KIBs in terms of capacity, cycle life and energy density will be presented, as well as K-storage mechanisms. In addition, various strategies to improve K-storage performance will be provided through combining insights from the study of material structures and properties and thus bring low-cost non-aqueous KIBs a step closer to application in sustainable large-scale energy storage systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    CAS  PubMed  Google Scholar 

  2. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    CAS  PubMed  Google Scholar 

  3. Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)

    CAS  PubMed  Google Scholar 

  4. Kundu, D., Talaie, E., Duffort, V., et al.: The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Edit. 54, 3431–3448 (2015)

    CAS  Google Scholar 

  5. Yang, C.J., Jackson, R.B.: Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sustain. Energy Rev. 15, 839–844 (2011)

    Google Scholar 

  6. Saidur, R., Rahim, N.A., Hasanuzzaman, M.: A review on compressed-air energy use and energy savings. Renew. Sustain. Energy Rev. 14, 1135–1153 (2010)

    Google Scholar 

  7. Bolund, B., Bernhoff, H., Leijon, M.: Flywheel energy and power storage systems. Renew. Sustain. Energy Rev. 11, 235–258 (2007)

    Google Scholar 

  8. Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    CAS  PubMed  Google Scholar 

  9. Häupler, B., Wild, A., Schubert, U.S.: Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5, 1402034 (2015)

    Google Scholar 

  10. Muldoon, J., Bucur, C.B., Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014)

    CAS  PubMed  Google Scholar 

  11. Li, Z., Huang, J., Liaw, B.Y., et al.: A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014)

    CAS  Google Scholar 

  12. Xu, C., Chen, Y., Shi, S., et al.: Secondary batteries with multivalent ions for energy storage. Sci. Rep. 5, 14120 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  PubMed  Google Scholar 

  14. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    CAS  Google Scholar 

  15. Croguennec, L., Palacin, M.R.: Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137, 3140–3156 (2015)

    CAS  PubMed  Google Scholar 

  16. Slater, M.D., Kim, D., Lee, E., et al.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)

    CAS  Google Scholar 

  17. Speirs, J., Contestabile, M., Houari, Y., et al.: The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 35, 183–193 (2014)

    Google Scholar 

  18. Olivetti, E.A., Ceder, G., Gaustad, G.G., et al.: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017)

    Google Scholar 

  19. Pan, H., Hu, Y.S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)

    CAS  Google Scholar 

  20. Kim, H., Kim, J.C., Bianchini, M., et al.: Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018)

    Google Scholar 

  21. Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)

    CAS  PubMed  Google Scholar 

  22. Wang, M., Jiang, C., Zhang, S., et al.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018)

    CAS  PubMed  Google Scholar 

  23. Lin, M.C., Gong, M., Lu, B., et al.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015)

    PubMed  Google Scholar 

  24. Okoshi, M., Yamada, Y., Komaba, S., et al.: Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, 54–60 (2017)

    Google Scholar 

  25. Lei, K., Li, F., Mu, C., et al.: High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10, 552–557 (2017)

    CAS  Google Scholar 

  26. Wu, X., Leonard, D.P., Ji, X.: Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29, 5031–5042 (2017)

    CAS  Google Scholar 

  27. Pramudita, J.C., Sehrawat, D., Goonetilleke, D., et al.: An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017)

    Google Scholar 

  28. Sultana, I., Rahman, M.M., Chen, Y., et al.: Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv. Funct. Mater. 28, 1703857 (2018)

    Google Scholar 

  29. Komaba, S., Hasegawa, T., Dahbi, M., et al.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015)

    CAS  Google Scholar 

  30. Jian, Z., Luo, W., Ji, X.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015)

    CAS  PubMed  Google Scholar 

  31. McCulloch, W.D., Ren, X., Yu, M., et al.: Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 7, 26158–26166 (2015)

    CAS  PubMed  Google Scholar 

  32. Zhang, W., Mao, J., Li, S., et al.: Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017)

    CAS  PubMed  Google Scholar 

  33. Gao, H., Zhou, T., Zheng, Y., et al.: CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27, 1702634 (2017)

    Google Scholar 

  34. Xie, K., Yuan, K., Li, X., et al.: Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13, 1701471 (2017)

    Google Scholar 

  35. Deng, Q., Pei, J., Fan, C., et al.: Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy 33, 350–355 (2017)

    CAS  Google Scholar 

  36. Qian, J., Wu, C., Cao, Y., et al.: Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018)

    Google Scholar 

  37. Zhu, Y., Yuan, S., Bao, D., et al.: Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 29, 1603719 (2017)

    Google Scholar 

  38. Mizuno, Y., Okubo, M., Hosono, E., et al.: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13055–13059 (2013)

    CAS  Google Scholar 

  39. Lipson, A.L., Pan, B., Lapidus, S.H., et al.: Rechargeable Ca-ion batteries: a new energy storage system. Chem. Mater. 27, 8442–8447 (2015)

    CAS  Google Scholar 

  40. Eftekhari, A.: Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126, 221–228 (2004)

    CAS  Google Scholar 

  41. Zhang, C., Xu, Y., Zhou, M., et al.: Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27, 1604307 (2017)

    Google Scholar 

  42. Chong, S., Chen, Y., Zheng, Y., et al.: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 5, 22465–22471 (2017)

    CAS  Google Scholar 

  43. Shadike, Z., Shi, D.R., Cao, M.H., et al.: Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery. J. Mater. Chem. A 5, 6393–6398 (2017)

    CAS  Google Scholar 

  44. He, G., Nazar, L.F.: Crystallite size control of Prussian White analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017)

    Google Scholar 

  45. Liao, J., Hu, Q., Yu, Y., et al.: A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J. Mater. Chem. A 5, 19017–19024 (2017)

    CAS  Google Scholar 

  46. Xue, L., Li, Y., Gao, H., et al.: Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139, 2164–2167 (2017)

    CAS  PubMed  Google Scholar 

  47. Bie, X., Kubota, K., Hosaka, T., et al.: A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017)

    CAS  Google Scholar 

  48. Song, J., Wang, L., Lu, Y., et al.: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015)

    CAS  PubMed  Google Scholar 

  49. Wu, X., Jian, Z., Li, Z., et al.: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54–57 (2017)

    CAS  Google Scholar 

  50. Ren, W., Qin, M., Zhu, Z., et al.: Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 17, 4713–4718 (2017)

    CAS  PubMed  Google Scholar 

  51. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    CAS  PubMed  Google Scholar 

  52. Wang, Y., Yu, X., Xu, S., et al.: A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013)

    PubMed  Google Scholar 

  53. Xu, B., Fell, C.R., Chi, M., et al.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011)

    CAS  Google Scholar 

  54. Yabuuchi, N., Kajiyama, M., Iwatate, J., et al.: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)

    CAS  PubMed  Google Scholar 

  55. Vaalma, C., Giffin, G.A., Buchholz, D., et al.: Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163, 1295–1299 (2016)

    Google Scholar 

  56. Hironaka, Y., Kubota, K., Komaba, S.: P2-and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 53, 3693–3696 (2017)

    CAS  Google Scholar 

  57. Kim, H., Kim, J.C., Bo, S.H., et al.: K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 7, 1700098 (2017)

    Google Scholar 

  58. Jiang, J., Li, Y., Liu, J., et al.: Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    CAS  PubMed  Google Scholar 

  59. Hwang, J.Y., Oh, S.M., Myung, S.T., et al.: Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015)

    CAS  PubMed  Google Scholar 

  60. Deng, T., Fan, X., Luo, C., et al.: Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries. Nano Lett. 18, 1522–1529 (2018)

    CAS  PubMed  Google Scholar 

  61. Liu, C., Luo, S., Huang, H., et al.: K0.67Ni0.17Co0.17Mn0.66O2: a cathode material for potassium-ion battery. Electrochem. Commun. 82, 150–154 (2017)

    CAS  Google Scholar 

  62. Kim, H., Seo, D.H., Kim, J.C., et al.: Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 29, 1702480 (2017)

    Google Scholar 

  63. Gong, Z., Yang, Y.: Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223–3242 (2011)

    CAS  Google Scholar 

  64. Barpanda, P., Ati, M., Melot, B.C., et al.: A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 10, 772–779 (2011)

    CAS  PubMed  Google Scholar 

  65. Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013)

    CAS  PubMed  Google Scholar 

  66. Barpanda, P., Oyama, G., Nishimura, S., et al.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Recham, N., Rousse, G., Sougrati, M.T., et al.: Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem. Mater. 24, 4363–4370 (2012)

    CAS  Google Scholar 

  68. Mathew, V., Kim, S., Kang, J., et al.: Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Mater. 6, 138 (2014)

    Google Scholar 

  69. Han, J., Li, G.N., Liu, F., et al.: Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 53, 1805–1808 (2017)

    CAS  Google Scholar 

  70. Chihara, K., Katogi, A., Kubota, K., et al.: KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017)

    CAS  Google Scholar 

  71. Song, W., Cao, X., Wu, Z., et al.: Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 30, 12438–12446 (2014)

    CAS  PubMed  Google Scholar 

  72. Lin, X., Huang, J., Tan, H., et al.: K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 16, 97–101 (2018)

    Google Scholar 

  73. Park, W.B., Han, S.C., Park, C., et al.: KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy Mater. 8, 1703099 (2017)

    Google Scholar 

  74. Liang, Y., Tao, Z., Chen, J., et al.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012)

    CAS  Google Scholar 

  75. Oyama, N., Tatsuma, T., Sotomura, T.: Organosulfur polymer batteries with high energy density. J. Power Sources 68, 135–138 (1997)

    CAS  Google Scholar 

  76. Yao, M., Senoh, H., Yamazaki, S., et al.: High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J. Power Sources 195, 8336–8340 (2010)

    CAS  Google Scholar 

  77. Liang, Y., Zhang, P., Yang, S., et al.: Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013)

    CAS  Google Scholar 

  78. Han, X., Chang, C., Yuan, L., et al.: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007)

    CAS  Google Scholar 

  79. Luo, W., Allen, M., Raju, V., et al.: An organic pigment as a high-performance Cathode for sodium-ion batteries. Adv. Energy Mater. 4, 1400554 (2014)

    Google Scholar 

  80. Wang, H., Yuan, S., Si, Z., et al.: Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 8, 3160–3165 (2015)

    Google Scholar 

  81. Zhu, Y., Yang, X., Zhang, X.: Hydronium ion batteries: a sustainable energy storage solution. Angew. Chem. Int. Ed. 56, 6378–6380 (2017)

    CAS  Google Scholar 

  82. Chen, Y., Luo, W., Carter, M., et al.: Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015)

    CAS  Google Scholar 

  83. Song, Z.P., Zhan, H., Zhou, Y.H.: Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 4, 448–450 (2009)

    Google Scholar 

  84. Zhang, K., Guo, C.Y., Zhao, Q., et al.: High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode. Adv. Sci. 2, 1500018 (2015)

    Google Scholar 

  85. Zhang, Y., Huang, Y.S., Yang, G.H., et al.: Dispersion–assembly approach to synthesize three-dimensional graphene/polymer composite aerogel as a powerful organic cathode for rechargeable Li and Na batteries. ACS Appl. Mater. Interfaces 9, 15549–15556 (2017)

    CAS  PubMed  Google Scholar 

  86. Wu, Y.W., Zeng, R.H., Nan, J.M., et al.: Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv. Energy Mater. 7, 1700278 (2017)

    Google Scholar 

  87. Song, Z.P., Qian, Y.M., Gordin, M.L., et al.: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015)

    CAS  Google Scholar 

  88. Wan, W., Lee, H.S., Yu, X.Q., et al.: Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Adv. 4, 19878–19882 (2014)

    CAS  Google Scholar 

  89. Jian, Z., Liang, Y., Rodríguez-Pérez, I.A., et al.: Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 71, 5–8 (2016)

    CAS  Google Scholar 

  90. Zhao, J., Yang, J., Sun, P., et al.: Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem. Commun. 86, 34–37 (2018)

    CAS  Google Scholar 

  91. Zhu, Y.H., Yang, X., Bao, D., et al.: High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2, 736–746 (2018)

    CAS  Google Scholar 

  92. Jian, Z., Xing, Z., Bommier, C., et al.: Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016)

    Google Scholar 

  93. Song, H., Li, N., Cui, H., et al.: Enhanced capability and cyclability of SnO2–graphene oxide hybrid anode by firmly anchored SnO2 quantum dots. J. Mater. Chem. A 1, 7558–7562 (2013)

    CAS  Google Scholar 

  94. Fang, Y., Xiao, L., Ai, X., et al.: Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895–5900 (2015)

    CAS  PubMed  Google Scholar 

  95. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    CAS  Google Scholar 

  96. Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)

    CAS  Google Scholar 

  97. Zhu, Y., Yin, Y., Yang, X., et al.: Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 56, 7881–7885 (2017)

    CAS  Google Scholar 

  98. Wang, X., Xu, X., Niu, C., et al.: Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17, 544–550 (2016)

    PubMed  Google Scholar 

  99. Xiao, N., McCulloch, W.D., Wu, Y.: Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017)

    CAS  PubMed  Google Scholar 

  100. Jiang, X., Zhang, T., Yang, L., et al.: A Fe/Mn based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries. ChemElectroChem 4, 2237–2242 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2016YFB0100103 and 2017YFA0206704), the National Program on Key Basic Research Project of China (Grant No. 2014CB932300), the Technology and Industry for National Defence of the People’s Republic of China (Grant No. JCKY2016130B010), the National Natural Science Foundation of China (Grant Nos. 51522101, 51471075, 51631004 and 51401084) and the China Postdoctoral Science Foundation (Grant No. 2016M601395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Bo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YH., Yang, X., Sun, T. et al. Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochem. Energ. Rev. 1, 548–566 (2018). https://doi.org/10.1007/s41918-018-0019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0019-7

Keywords

PACS

Navigation