Skip to main content

Advertisement

Log in

One-Pot Seedless Aqueous Design of Metal Nanostructures for Energy Electrocatalytic Applications

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Over the past several decades, extensive efforts have been undertaken to find methods to synthesize advanced electrocatalysts that possess rationally controllable sizes, shapes, crystallinities, compositions and structures for efficient energy conversion technologies. Of these methods, the one-pot seedless synthetic method in aqueous solution at ambient temperature has attracted extensive attention from researchers because it is a simple, inexpensive, energy-efficient, safe and less toxic method for the synthesis of electrocatalytic nanomaterials. In this review, recent developments in one-pot seedless synthetic strategies for the design of various structures of Au, Pt, Pd, Ag and multimetallic nanocrystals in aqueous solutions at ambient temperatures will be introduced, primarily focusing on the structure–electrocatalytic performance relationships of the as-prepared metal nanocrystals. Current challenges and outlooks for future research directions will also be provided in this promising research field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: a–f Reproduced with permission from Ref. [60]

Fig. 2

Source: ad Reproduced with permission from Ref. [61]

Fig. 3

Source: ab Reproduced with permission from Ref. [68, 69], respectively. Source: cd Reproduced with permission from Ref. [70]

Fig. 4

Source: ab Reproduced with permission from Ref. [75]. Source: c Reproduced with permission from Ref. [76]

Fig. 5

Source: ab Reproduced with permission from Ref. [86, 87] respectively

Fig. 6

Source: ab Reproduced with permission from Ref. [95, 96], respectively

Fig. 7

Source: ab Reproduced with permission from Ref. [97]. Source: c Reproduced with permission from Ref. [98]

Fig. 8

Source: ab Reproduced with permission from Ref. [100]. Source: cd Reproduced with permission from Ref. [101]

Fig. 9

Source: ag Reproduced with permission from Ref. [102]

Fig. 10

Source: ab Reproduced with permission from Ref. [103]. Source: cd Reproduced with permission from Ref. [104]. Source: ef Reproduced with permission from Ref. [105]. Source: g Reproduced with permission from Ref. [106]

Fig. 11

Source: a Reproduced with permission from Ref. [106]

Fig. 12

Source: ab Reproduced with permission from Ref. [108]. Source: cd Reproduced with permission from Ref. [109]

Fig. 13

Source: ab Reproduced with permission from Ref. [108]

Fig. 14

Source: af Reproduced with permission from Ref. [112]

Similar content being viewed by others

References

  1. Gasteiger, H.A., Marković, N.M.: Just a dream—or future reality? Science 324, 48–49 (2009)

    CAS  PubMed  Google Scholar 

  2. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    CAS  PubMed  Google Scholar 

  3. Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012)

    CAS  PubMed  Google Scholar 

  4. Hwang, J., Rao, R.R., Giordano, L., et al.: Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017)

    CAS  PubMed  Google Scholar 

  5. Jiao, Y., Zheng, Y., Jaroniec, M., et al.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    CAS  PubMed  Google Scholar 

  6. Wang, Z.L., Li, C., Yamauchi, Y.: Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 11, 373–391 (2016)

    CAS  Google Scholar 

  7. Jin, H., Guo, C., Liu, X., et al.: Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.1027b00689

    Article  PubMed  Google Scholar 

  8. Adzic, R.R., Zhang, J., Sasaki, K., et al.: Platinum monolayer fuel cell electrocatalysts. Top. Catal. 4(6), 249–262 (2007)

    Google Scholar 

  9. Koenigsmann, C., Wong, S.S.: One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 4, 1161–1176 (2011)

    CAS  Google Scholar 

  10. Liang, Y., Li, Y., Wang, H., et al.: Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013–2036 (2013)

    CAS  PubMed  Google Scholar 

  11. Zhao, Y., Liu, B., Pan, L., et al.: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 6, 2856–2870 (2013)

    CAS  Google Scholar 

  12. Faber, M.S., Jin, S.: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014)

    CAS  Google Scholar 

  13. Tang, J., Liu, J., Torad, N.L., et al.: Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9, 305–323 (2014)

    CAS  Google Scholar 

  14. Zhang, Z., Liu, J., Gu, J., et al.: An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 7, 2535–2558 (2014)

    CAS  Google Scholar 

  15. Chia, X., Eng, A.Y.S., Ambrosi, A., et al.: Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015)

    CAS  PubMed  Google Scholar 

  16. Gawande, M.B., Goswami, A., Asefa, T., et al.: Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015)

    CAS  PubMed  Google Scholar 

  17. Liu, H.L., Nosheen, F., Wang, X.: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem. Soc. Rev. 44, 3056–3078 (2015)

    CAS  PubMed  Google Scholar 

  18. Lai, J., Nsabimana, A., Luque, R., et al.: 3D porous carbonaceous electrodes for electrocatalytic applications. Joule 2, 76–93 (2018)

    CAS  Google Scholar 

  19. Hunter, B.M., Gray, H.B., Müller, A.M.: Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016)

    CAS  PubMed  Google Scholar 

  20. Zhou, M., Wang, H.L., Guo, S.: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016)

    CAS  PubMed  Google Scholar 

  21. Zhu, C., Li, H., Fu, S., et al.: Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531 (2016)

    CAS  PubMed  Google Scholar 

  22. Zhu, D.D., Liu, J.L., Qiao, S.Z.: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016)

    CAS  PubMed  Google Scholar 

  23. Yan, D., Li, Y., Huo, J., et al.: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017)

    Google Scholar 

  24. Zhu, C., Fu, S., Shi, Q., et al.: Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017)

    CAS  Google Scholar 

  25. Bianchini, C., Shen, P.K.: Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183–4206 (2009)

    CAS  PubMed  Google Scholar 

  26. Chen, A., Holt-Hindle, P.: Platinum-based nanostructured materials: synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010)

    CAS  PubMed  Google Scholar 

  27. Wang, D., Li, Y.: Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater. 23, 1044–1060 (2011)

    CAS  PubMed  Google Scholar 

  28. Hu, S., Wang, X.: Ultrathin nanostructures: smaller size with new phenomena. Chem. Soc. Rev. 42, 5577–5594 (2013)

    CAS  PubMed  Google Scholar 

  29. Wu, J., Yang, H.: Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013)

    CAS  PubMed  Google Scholar 

  30. Kang, Y., Yang, P., Markovic, N.M., et al.: Shaping electrocatalysis through tailored nanomaterials. Nano Today 11, 587–600 (2016)

    CAS  Google Scholar 

  31. Lv, H., Li, D., Strmcnik, D., et al.: Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 29, 149–165 (2016)

    CAS  Google Scholar 

  32. Seh, Z.W., Kibsgaard, J., Dickens, C.F. et .al.: Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, 146–157 (2017)

    Google Scholar 

  33. Lai, J., Guo, S.: Design of ultrathin Pt-based multimetallic nanostructures for efficient oxygen reduction electrocatalysis. Small 13, 1702156 (2017)

    Google Scholar 

  34. Chen, A., Ostrom, C.: Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 115, 11999–12044 (2015)

    CAS  PubMed  Google Scholar 

  35. Wang, Y.J., Zhao, N., Fang, B., et al.: Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015)

    CAS  PubMed  Google Scholar 

  36. Guo, S., Wang, E.: Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6, 240–264 (2011)

    CAS  Google Scholar 

  37. Wu, B., Zheng, N.: Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013)

    Google Scholar 

  38. Lai, J., Luque, R., Xu, G.: Recent advances in the synthesis and electrocatalytic applications of platinum-based bimetallic alloy nanostructures. ChemCatChem 7, 3206–3228 (2015)

    CAS  Google Scholar 

  39. You, H., Yang, S., Ding, B., et al.: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42, 2880–2904 (2013)

    CAS  PubMed  Google Scholar 

  40. Xu, Y., Zhang, B.: Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem. Soc. Rev. 43, 2439–2450 (2014)

    CAS  PubMed  Google Scholar 

  41. Guo, S., Zhang, S., Sun, S.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew.Chem. Int. Ed. 52, 8526–8544 (2013)

    CAS  Google Scholar 

  42. Zhang, L., Niu, W., Gao, W., et al.: Synthesis of convex hexoctahedralpalladium@gold core–shell nanocrystals with 431 high-index facets with remarkable electrochemiluminescence activities. ACS Nano 8, 5953–5958 (2014)

    CAS  PubMed  Google Scholar 

  43. Lai, J., Niu, W., Li, S., et al.: Concave and duck web-like platinum nanopentagon with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A4, 807–812 (2016)

    Google Scholar 

  44. Wu, F., Lai, J., Zhang, l, et al.: Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation. Nanoscale 10, 9369–9375 (2018)

    CAS  PubMed  Google Scholar 

  45. Lai, J., Niu, W., Qi, W., et al.: A platinum highly concave cube with one leg on each vertex as an advanced nanocatalyst for electrocatalytic applications. ChemCatChem 7, 1064–1069 (2015)

    CAS  Google Scholar 

  46. Lai, J., Huang, B., Tang, Y., et al.: Barrier-free interface electron transfer on PtFe-Fe2C janus-like nanoparticles boosts oxygen catalysis. Chem 4, 1153–1166 (2018)

    CAS  Google Scholar 

  47. Zhu, C., Du, D., Eychmüller, A., et al.: Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 115, 8896–8943 (2015)

    CAS  PubMed  Google Scholar 

  48. Gilroy, K.D., Ruditskiy, A., Peng, H.C., et al.: Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414–10472 (2016)

    CAS  PubMed  Google Scholar 

  49. Ling, T., Wang, J.J., Zhang, H., et al.: Freestanding ultrathin metallic nanosheets: materials, synthesis, and applications. Adv. Mater. 27, 5396–5402 (2015)

    CAS  PubMed  Google Scholar 

  50. Malgras, V., Ataee-Esfahani, H., Wang, H., et al.: Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993–1010 (2016)

    CAS  PubMed  Google Scholar 

  51. Wang, W., Lei, B., Guo, S.: Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 6, 1600236 (2016)

    Google Scholar 

  52. Wang, W., Lv, F., Lei, B., et al.: Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 28, 10117–10141 (2016)

    CAS  PubMed  Google Scholar 

  53. Xia, Y., Xiong, Y., Lim, B., et al.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    CAS  Google Scholar 

  54. Lim, B., Jiang, M., Tao, J., et al.: Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 19, 189–200 (2009)

    CAS  Google Scholar 

  55. Lai, J., Niu, W., Luque, R., et al.: Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015)

    CAS  Google Scholar 

  56. Hong, J.W., Kim, Y., Wi, D.H., et al.: Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 55, 2753–2758 (2016)

    CAS  Google Scholar 

  57. Duan, H., Wang, D., Li, Y.: Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792 (2015)

    CAS  PubMed  Google Scholar 

  58. Niu, W., Li, Z.-Y., Shi, L., et al.: Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth. Des. 8, 4440–4444 (2008)

    CAS  Google Scholar 

  59. Zeng, J., Zhang, Q., Chen, J., et al.: A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30–35 (2009)

    Google Scholar 

  60. Pedireddy, S., Lee, H.K., Tjiu, W.W., et al.: One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat. Commun. 5, 4947 (2014)

    CAS  PubMed  Google Scholar 

  61. Ma, Y., Kuang, Q., Jiang, Z., et al.: Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. 47, 8901–8904 (2008)

    CAS  Google Scholar 

  62. Zhang, L., Niu, W., Xu, G.: Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7, 586–605 (2012)

    CAS  Google Scholar 

  63. Quan, Z., Wang, Y., Fang, J.: High-index faceted noble metal nanocrystals. Acc. Chem. Res. 46, 191–202 (2012)

    PubMed  Google Scholar 

  64. Chen, H., Shao, L., Li, Q., et al.: Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    CAS  PubMed  Google Scholar 

  65. Bao, D., Zhang, Q., Meng, F.L., et al.: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1604799 (2017)

    Google Scholar 

  66. Shi, Y., Wang, J., Wang, C., et al.: Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 137, 7365–7370 (2015)

    CAS  PubMed  Google Scholar 

  67. Katz-Boon, H., Walsh, M., Dwyer, C., et al.: Stability of crystal facets in gold nanorods. Nano Lett. 15, 1635–1641 (2015)

    CAS  PubMed  Google Scholar 

  68. Jana, N.R.: Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1, 875–882 (2005)

    CAS  PubMed  Google Scholar 

  69. Lai, J., Zhang, L., Niu, W., et al.: One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology 25, 125601–125605 (2014)

    PubMed  Google Scholar 

  70. Zhu, C., Peng, H.C., Zeng, J., et al.: Facile synthesis of gold wavy nanowires and investigation of their growth mechanism. J. Am. Chem. Soc. 134, 20234–20237 (2012)

    CAS  PubMed  Google Scholar 

  71. Lai, J., Zhang, L., Qi, W., et al.: Facile synthesis of porous PtM (M = Cu, Ni) nanowires and their application as efficient electrocatalysts for methanol electrooxidation. ChemCatChem 6, 2253–2257 (2014)

    CAS  Google Scholar 

  72. Liang, H.W., Cao, X., Zhou, F., et al.: A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 23, 1467–1471 (2011)

    CAS  PubMed  Google Scholar 

  73. Wu, H., Li, H., Zhai, Y., et al.: Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation. Adv. Mater. 24, 1594–1597 (2012)

    CAS  PubMed  Google Scholar 

  74. Wu, H., He, H., Zhai, Y., et al.: A facile and general preparation of high-performance noble-metal-based free-standing nanomembranes by a reagentless interfacial self-assembly strategy. Nanoscale 4, 6974–6980 (2012)

    CAS  PubMed  Google Scholar 

  75. Chen, L., Ji, F., Xu, Y., et al.: High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014)

    CAS  PubMed  Google Scholar 

  76. Zhang, J., Du, J., Han, B., et al.: Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116–1119 (2006)

    CAS  Google Scholar 

  77. Chen, J., Lim, B., Lee, E.P., et al.: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81–95 (2009)

    Google Scholar 

  78. Oezaslan, M., Hasché, F., Strasser, P.: Pt-Based core–shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 4, 3273–3291 (2013)

    CAS  Google Scholar 

  79. Jung, N., Chung, D.Y., Ryu, J., et al.: Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 9, 433–456 (2014)

    CAS  Google Scholar 

  80. Peng, Z., Yang, H.: Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4, 143–164 (2009)

    CAS  Google Scholar 

  81. Stephens, I.E.L., Bondarenko, A.S., Gronbjerg, U., et al.: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012)

    CAS  Google Scholar 

  82. Wang, Y.J., Long, W., Wang, L., et al.: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11, 258–275 (2017)

    Google Scholar 

  83. Lim, B., Xia, Y.: Metal nanocrystals with highly branched morphologies. Angew. Chem. Int. Ed. 50, 76–85 (2011)

    CAS  Google Scholar 

  84. Guo, S., Dong, S., Wang, E.: Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity. Chem. Commun. 46, 1869–1871 (2010)

    CAS  Google Scholar 

  85. Lim, B., Jiang, M., Camargo, P.H.C., et al.: Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009)

    CAS  PubMed  Google Scholar 

  86. Wang, L., Yamauchi, Y.: Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 131, 9152–9153 (2009)

    CAS  PubMed  Google Scholar 

  87. Song, Y., Dorin, R.M., Garcia, R.M., et al.: Synthesis of platinum nanowheels using a bicellar template. J. Am. Chem. Soc. 130, 12602–12603 (2008)

    CAS  PubMed  Google Scholar 

  88. Bu, L., Zhang, N., Guo, S., et al.: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016)

    CAS  PubMed  Google Scholar 

  89. Saleem, F., Zhang, Z., Xu, B., et al.: Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 135, 18304–18307 (2013)

    CAS  PubMed  Google Scholar 

  90. Antolini, E.: Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915–931 (2009)

    CAS  Google Scholar 

  91. Liao, F., Lo, T.W.B., Tsang, S.C.E.: Recent developments in palladium-based bimetallic catalysts. ChemCatChem 7, 1998–2014 (2015)

    CAS  Google Scholar 

  92. Zhang, L., Roling, L.T., Wang, X., et al.: Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015)

    CAS  PubMed  Google Scholar 

  93. Jin, M., Zhang, H., Xie, Z., et al.: Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 5, 6352–6357 (2012)

    CAS  Google Scholar 

  94. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    CAS  PubMed  Google Scholar 

  95. Chang, G., Oyama, M., Hirao, K.: Facile synthesis of monodisperse palladium nanocubes and the characteristics of self-assembly. Acta Mater. 55, 3453–3456 (2007)

    CAS  Google Scholar 

  96. Huang, X., Li, Y., Chen, Y., et al.: Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem. Int. Ed. 52, 2520–2524 (2013)

    CAS  Google Scholar 

  97. Métraux, G.S., Mirkin, C.A.: Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 17, 412–415 (2005)

    Google Scholar 

  98. Yu, H., Zhang, Q., Liu, H., et al.: Thermal synthesis of silver nanoplates revisited: a modified photochemical process. ACS Nano 8, 10252–10261 (2014)

    CAS  PubMed  Google Scholar 

  99. Zhang, Q., Li, N., Goebl, J., et al.: A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J. Am. Chem. Soc. 133, 18931–18939 (2011)

    CAS  PubMed  Google Scholar 

  100. Lee, Y.W., Kim, M., Kang, S.W., et al.: Polyhedral bimetallic alloy nanocrystals exclusively bound by 110 facets: Au–Pd rhombic dodecahedra. Angew. Chem. Int. Ed. 50, 3466–3470 (2011)

    CAS  Google Scholar 

  101. Huang, X., Li, Y., Chen, Y., et al.: Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem. Int. Ed. 52, 6063–6067 (2013)

    CAS  Google Scholar 

  102. Huang, W., Kang, X., Xu, C., et al.: 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 30, 1706962 (2018)

    Google Scholar 

  103. Wang, L., Yamauchi, Y.: Autoprogrammed synthesis of triple-layered Au@Pd@Pt core–shell nanoparticles consisting of aAu@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132, 13636–13638 (2010)

    CAS  PubMed  Google Scholar 

  104. Wang, L., Nemoto, Y., Yamauchi, Y.: Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133, 9674–9677 (2011)

    CAS  PubMed  Google Scholar 

  105. Ataee-Esfahani, H., Imura, M., Yamauchi, Y.: All-metal mesoporous nanocolloids: solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem. Int. Ed. 52, 13611–13615 (2013)

    CAS  Google Scholar 

  106. Wang, L., Yamauchi, Y.: Metallic nanocages: synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 135, 16762–16765 (2013)

    CAS  PubMed  Google Scholar 

  107. Liu, W., Herrmann, A.K., Bigall, N.C., et al.: Noble metal aerogels—synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 48, 154–162 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, W., Rodriguez, P., Borchardt, L., et al.: Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 9849–9852 (2013)

    CAS  Google Scholar 

  109. Fu, S., Song, J., Zhu, C., et al.: Ultrafine and highly disorderedNi2Fe1nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte. Nano Energy 44, 319–326 (2018)

    CAS  Google Scholar 

  110. Scofield, M.E., Koenigsmann, C., Wang, L., et al.: Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8, 350–363 (2015)

    CAS  Google Scholar 

  111. Guo, S., Zhang, S., Sun, X., et al.: Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 133, 15354–15357 (2011)

    CAS  PubMed  Google Scholar 

  112. Li, S., Lai, J., Luque, R., et al.: Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 9, 3097–3102 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51671003), the National Basic Research Program of China (No. 2016YFB0100201) and the Young Thousand Talented Program and China P Science Foundation (No. 2017M620494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Chao, Y., Zhou, P. et al. One-Pot Seedless Aqueous Design of Metal Nanostructures for Energy Electrocatalytic Applications. Electrochem. Energ. Rev. 1, 531–547 (2018). https://doi.org/10.1007/s41918-018-0018-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0018-8

Keywords

PACS

Navigation