Skip to main content

Advertisement

Log in

Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries

  • Review Article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Layered transition metal oxides such as LiNixMnyCo1−xyO2 and LiNixCoyAl1−xyO2 (NCA) (referred to as ternary cathode material, TCM) are widely recognized to be promising candidates for lithium batteries (LBs) due to superior reversible capacities, high operating voltages and low production costs. However, despite recent progress toward practical application, commercial TCM-based lithium ion batteries (LIBs) suffer from severe issues such as the use of flammable and hazardous electrolytes, with one high profile example being the ignition of NCA-based LIBs used in Tesla Model S vehicles after accidents, which jeopardizes the future development of TCM-based LBs. Here, the need for TCM and flammable liquid electrolytes in TCM-based LBs is a major obstacle that needs to be overcome, in which conflicting requirements for energy density and safety in practical application need to be resolved. To address this, polymer electrolytes have been demonstrated to be a promising solution and thus far, many polymer electrolytes have been developed for high-performance TCM-based LBs. However, comprehensive performances, especially long-term cycling capabilities, are still insufficient to meet market demands for electric vehicles, and moreover, comprehensive reviews into polymer electrolytes for TCM-based LBs are rare. Therefore, this review will comprehensively summarize the ideal requirements, intrinsic advantages and research progress of polymer electrolytes for TCM-based LBs. In addition, perspectives and challenges of polymer electrolytes for advanced TCM-based LBs are provided to guide the development of TCM-based power batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Copyright 2015, Elsevier

Fig. 2

Copyright 2017, Wiley

Fig. 3

Copyright 2018, Elsevier

Fig. 4
Fig. 5

Copyright 2017, Elsevier

Fig. 6

Copyright 2017, ACS

Fig. 7

Copyright 2017, RSC

Fig. 8

Copyright 2017, RSC

Similar content being viewed by others

References

  1. Pan, S., Ren, J., Fang, X., et al.: Integration: an effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 6, 1501867 (2016)

    Article  CAS  Google Scholar 

  2. Kim, J., Kumar, R., Bandodkar, A.J., et al.: Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3, 1600260 (2017)

    Article  CAS  Google Scholar 

  3. Cheng, X.L., Pan, J., Zhao, Y., et al.: Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018)

    Article  CAS  Google Scholar 

  4. Vandepaer, L., Cloutier, J., Amor, B.: Environmental impacts of lithium metal polymer and lithium-ion stationary batteries. Renew. Sustain. Energy Rev. 78, 46–60 (2017)

    Article  CAS  Google Scholar 

  5. Sun, C.W., Liu, J., Gong, Y.D., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)

    Article  CAS  Google Scholar 

  6. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    Article  CAS  Google Scholar 

  7. Jiang, C., Li, H.Q., Wang, C.L.: Recent progress in solid-state electrolytes for alkali-ion batteries. Sci. Bull. 62, 1473–1490 (2017)

    Article  CAS  Google Scholar 

  8. Zhou, G.M., Li, F., Cheng, H.M.: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014)

    Article  CAS  Google Scholar 

  9. Liu, J., Xu, J.Y., Lin, Y., et al.: All-solid-state lithium ion battery: research and industrial prospects. Acta Chim. Sin. 71, 869–878 (2013)

    Article  CAS  Google Scholar 

  10. Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. Saha, P., Datta, M.K., Velikokhatnyi, O.I., et al.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)

    Article  CAS  Google Scholar 

  12. Hueso, K.B., Palomares, V., Armand, M., et al.: Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 10, 4082–4114 (2017)

    Article  CAS  Google Scholar 

  13. Che, H.Y., Chen, S.L., Xie, Y.Y., et al.: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017)

    Article  CAS  Google Scholar 

  14. Bloomberg New Energy Finance, Electric Vehicle Outlook 2017 (2017). https://about.bnef.com. Accessed 1 Jan 2019

  15. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    Article  CAS  Google Scholar 

  16. Li, J., Zhu, J., Li, Q., Huang, J., Tao, X.: Development of electrode materials for lithium ion battery with high energy density. New chem. Mater. 43, 15–16 (2015)

    Google Scholar 

  17. Yang, S., Ren, W., Chen, J.: Li-rich oxides cathode materials: towards a new generation of lithium-ion batteries with high energy density. Mater. Rev. 31, 1–10 (2017)

    CAS  Google Scholar 

  18. Liu, J.Y., Li, X.X., Huang, J.R., et al.: Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J. Mater. Chem. A 5, 5977–5994 (2017)

    Article  CAS  Google Scholar 

  19. Li, J., Du, Z., Ruther, R.E., et al.: Toward low-cost, high-energy density, and high-power density lithium-ion batteries. JOM 69, 1484–1496 (2017)

    Article  CAS  Google Scholar 

  20. Ma, J., Hu, P., Cui, G., et al.: Surface and interface issues in spinel LiNi0.5Mn1.5O: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 3578–3606 (2016)

    Article  CAS  Google Scholar 

  21. Placke, T., Kloepsch, R., Duehnen, S., et al.: Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017)

    Article  CAS  Google Scholar 

  22. Radin, M.D., Hy, S., Sina, M., et al.: Narrowing the gap between theoretical and practical capacities in li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017)

    Article  CAS  Google Scholar 

  23. Myung, S.T., Maglia, F., Park, K.J., et al.: Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017)

    Article  CAS  Google Scholar 

  24. Ding, Y., Mu, D., Wu, B., et al.: Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl. Energy 195, 586–599 (2017)

    Article  CAS  Google Scholar 

  25. Manthiram, A., Knight, J.C., Myung, S.T., et al.: Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016)

    Article  CAS  Google Scholar 

  26. Liu, W., Oh, P., Liu, X., et al.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 54, 4440–4457 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, X., Wang, J., Dong, X., et al.: Structure design and performance of LiNixCoyMn1−xyO2 cathode materials for lithium-ion batteries: a review. J. Chin. Chem. Soc.-TAIP 61, 1071–1083 (2014)

    Article  CAS  Google Scholar 

  28. Chen, J.: Recent progress in advanced materials for lithium ion batteries. Materials 6, 156–183 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu, B., Qian, D., Wang, Z., et al.: Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R 73, 51–65 (2012)

    Article  CAS  Google Scholar 

  30. Kraytsberg, A., Ein-Eli, Y.: Higher, stronger, better… a review of 5 V cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922–939 (2012)

    Article  CAS  Google Scholar 

  31. Yabuuchi, N., Makimura, Y., Ohzuku, T.: Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries III. Rechargeable capacity and cycleability. J. Electrochem. Soc. 154, A314–A321 (2007)

    Article  CAS  Google Scholar 

  32. Ohzuku, T., Brodd, R.J.: An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 174, 449–456 (2007)

    Article  CAS  Google Scholar 

  33. Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    Article  CAS  Google Scholar 

  34. Ben Yahia, H., Shikano, M., Kobayashi, H.: Phase transition mechanisms in LixCoO2 (0.25\(\leqslant\)  x \(\leqslant\) 1) based on group–subgroup transformations. Chem. Mater. 25, 3687–3701 (2013)

    Article  CAS  Google Scholar 

  35. Chen, Z.H., Lu, Z.H., Dahn, J.R.: Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604–A1609 (2002)

    Article  CAS  Google Scholar 

  36. Van der Ven, A., Aydinol, M.K., Ceder, G., et al.: First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998)

    Article  Google Scholar 

  37. Wang, L., Maxisch, T.M., Ceder, G.: A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007)

    Article  CAS  Google Scholar 

  38. Noh, H.J., Youn, S., Yoon, C.S., et al.: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013)

    Article  CAS  Google Scholar 

  39. Bak, S.M., Hu, E., Zhou, Y., et al.: Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces. 6, 22594–22601 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Konishi, H., Yoshikawa, M., Hirano, T.: The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x = 0, 0.02, 0.04). J. Power Sources 244, 23–28 (2013)

    Article  CAS  Google Scholar 

  41. Feng, X., Ouyang, M., Liu, X., et al.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018)

    Article  Google Scholar 

  42. Li, W., Song, B., Manthiram, A.: high-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Xia, L., Yu, L., Hu, D., et al.: Research progress and perspectives on high voltage, flame retardant electrolytes for lithium-ion batteries. Acta Chim. Sin. 75, 1183–1195 (2017)

    Article  Google Scholar 

  44. Tan, S., Ji, Y.J., Zhang, Z.R., et al.: Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15, 1956–1969 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Choi, N.S., Han, J.G., Ha, S.Y., et al.: Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Adv. 5, 2732–2748 (2015)

    Article  CAS  Google Scholar 

  47. Zhang, L., Ma, Y., Du, C., et al.: Research on the high-voltage electrolyte for lithium ion batteries. Prog. Chem. 26, 553–559 (2014)

    CAS  Google Scholar 

  48. Liu, K., Pei, A., Lee, H.R., et al.: Lithium metal anodes with an adaptive “solid–liquid” interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Komaba, S., Kumagai, N., Kataoka, Y.: Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochim. Acta 47, 1229–1239 (2002)

    Article  CAS  Google Scholar 

  50. Zheng, J., Yan, P., Zhang, J., et al.: Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages. Nano Res. 10, 4221–4231 (2017)

    Article  CAS  Google Scholar 

  51. Wang, Z., Lu, H.Q., Yin, Y.P., et al.: FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met. 36, 899–904 (2017)

    Article  CAS  Google Scholar 

  52. Min, K., Park, K., Park, S.Y., et al.: Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates. Sci. Rep. 7, 7151 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McNulty, D., Geaney, H., O’Dwyer, C.: Carbon-coated honeycomb Ni–Mn–Co–O inverse opal: a high capacity ternary transition metal oxide anode for Li-ion batteries. Sci. Rep. 7, 42263 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He, L., Xu, J., Han, T., et al.: SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram. Int. 43, 5267–5273 (2017)

    Article  CAS  Google Scholar 

  55. Xie, Y., Gao, D., Zhang, L.L., et al.: CeF3-modified LiNi1/3CO1/3Mn1/3O2 cathode material for high-voltage Li-ion batteries. Ceram. Int. 42, 14587–14594 (2016)

    Article  CAS  Google Scholar 

  56. Loeffler, N., Kim, G.T., Mueller, F., et al.: In situ coating of Li[Ni0.33Mn0.33Co0.33]O2 particles to enable aqueous electrode processing. Chemsuschem 9, 1112–1117 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Wang, L., Ma, Y., Li, Q., et al.: 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. J. Power Sources 361, 227–236 (2017)

    Article  CAS  Google Scholar 

  58. Su, C.C., He, M., Redfern, P.C., et al.: Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries. Energy Environ. Sci. 10, 900–904 (2017)

    Article  CAS  Google Scholar 

  59. Hilbig, P., Ibing, L., Wagner, R., et al.: Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies 10, 1312 (2017)

    Article  CAS  Google Scholar 

  60. Tu, W., Xing, L., Xia, P., et al.: Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature. Electrochim. Acta 204, 192–198 (2016)

    Article  CAS  Google Scholar 

  61. Liao, X., Zheng, X., Chen, J., et al.: Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide. Electrochim. Acta 212, 352–359 (2016)

    Article  CAS  Google Scholar 

  62. Mai, S., Xu, M., Liao, X., et al.: Tris(trimethylsilyl) phosphite as electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Electrochim. Acta 147, 565–571 (2014)

    Article  CAS  Google Scholar 

  63. Todorov, Y.M., Fujii, K., Yoshimoto, N., et al.: Ion-solvation structure and battery electrode characteristics of nonflammable organic electrolytes based on tris(trifluoroethyl)phosphate dissolving lithium salts. Phys. Chem. Chem. Phys. 19, 31085–31093 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. Zeng, Z., Wu, B., Xiao, L., et al.: Safer lithium ion batteries based on nonflammable electrolyte. J. Power Sources 279, 6–12 (2015)

    Article  CAS  Google Scholar 

  65. Feng, J.K., Sun, X.J., Ai, X.P., et al.: Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries. J. Power Sources 184, 570–573 (2008)

    Article  CAS  Google Scholar 

  66. Xu, G., Pang, C., Chen, B., et al.: Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy Mater. 8, 1701398 (2018)

    Article  CAS  Google Scholar 

  67. Xu, G., Liu, Z., Zhang, C., et al.: Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 3, 4092–4123 (2015)

    Article  CAS  Google Scholar 

  68. Pang, C., Xu, G., An, W., et al.: Three-component functional additive in a LiPF6-based carbonate electrolyte for a high-voltage LiCoO2/graphite battery system. Energy Technol. 5, 1979–1989 (2017)

    Article  CAS  Google Scholar 

  69. Zeng, Z., Murugesan, V., Han, K.S., et al.: Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018)

    Article  CAS  Google Scholar 

  70. Shi, P., Zheng, H., Liang, X., et al.: A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chem. Commun. 54, 4453–4456 (2018)

    Article  CAS  Google Scholar 

  71. Suo, L., Xue, W., Gobet, M., et al.: Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. PNAS 115, 1156–1161 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. Jiao, S., Ren, X., Cao, R., et al.: Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018)

    Article  CAS  Google Scholar 

  73. Alvarado, J., Schroeder, M.A., Zhang, M., et al.: A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21, 341–353 (2018)

    Article  CAS  Google Scholar 

  74. Wang, J., Yamada, Y., Sodeyama, K., et al.: Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2017)

    Article  CAS  Google Scholar 

  75. Shiga, T., Kato, Y., Kondo, H., et al.: Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries. J. Mater. Chem. A 5, 5156–5162 (2017)

    Article  CAS  Google Scholar 

  76. Wang, J., Yamada, Y., Sodeyama, K., et al.: Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abbrent, S., Greenbaum, S.: Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr. Opin. Colloid Interface Sci. 18, 228–244 (2013)

    Article  CAS  Google Scholar 

  78. Arya, A., Sharma, A.L.: Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017)

    Article  CAS  Google Scholar 

  79. Ahmad, S.: Polymer electrolytes: characteristics and peculiarities. Ionics 15, 309–321 (2009)

    Article  CAS  Google Scholar 

  80. Zhang, Q.Q., Liu, K., Ding, F., et al.: Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10, 4139–4174 (2017)

    Article  Google Scholar 

  81. Varshney, P.K., Gupta, S.: Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17, 479–483 (2011)

    Article  CAS  Google Scholar 

  82. Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998)

    Article  CAS  PubMed  Google Scholar 

  83. Takeda, Y., Imanishi, N., Yamamoto, O.: Developments of the advanced all-solid-state polymer electrolyte lithium secondary battery. Electrochemistry 77, 784–797 (2009)

    Article  CAS  Google Scholar 

  84. Li, J., Ma, C., Chi, M., et al.: Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

    Article  CAS  Google Scholar 

  85. Hu, Z., Zhang, S., Dong, S., et al.: Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem. Mater. 29, 4682–4689 (2017)

    Article  CAS  Google Scholar 

  86. Zheng, G.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  PubMed  Google Scholar 

  87. Ngai, K.S., Ramesh, S., Ramesh, K., et al.: A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)

    Article  CAS  Google Scholar 

  88. Chen, Y., Tang, Z., Yang, S., et al.: A high-voltage all-solid-state lithium-ion battery with Li–Mn–Ni–O and silicon thin-film electrodes. Mater. Technol. 30, A58–A63 (2015)

    Article  CAS  Google Scholar 

  89. Schwenzel, J., Thangadurai, V., Weppner, W.: Developments of high-voltage all-solid-state thin-film lithium ion batteries. J. Power Sources 154, 232–238 (2006)

    Article  CAS  Google Scholar 

  90. Yarmolenko, O.V., Yudina, A.V., Khatmullina, K.G.: Nanocomposite polymer electrolytes for the lithium power sources (a review). Russ. J. Electrochem. 54, 325–343 (2018)

    Article  CAS  Google Scholar 

  91. Fenton, D.E., Parker, J.M., Wright, P.V.: Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)

    Article  CAS  Google Scholar 

  92. Long, L., Wang, S., Xiao, M., et al.: Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016)

    Article  CAS  Google Scholar 

  93. Patil, A., Patil, V., Choi, J.W., et al.: Solid electrolytes for rechargeable thin film lithium batteries: a review. J. Nanosci. Nanotechnol. 17, 29–71 (2017)

    Article  CAS  Google Scholar 

  94. Dong, T.T., Zhang, J.J., Chai, J.C., et al.: Research progress on polycarbonate-based solid-state polymer electrolytes. Acta Polym. Sin. 17, 906–921 (2017)

    Google Scholar 

  95. Hu, P., Chai, J.C., Duan, Y.L., et al.: Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 4, 10070–10083 (2016)

    Article  CAS  Google Scholar 

  96. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005)

    Article  CAS  Google Scholar 

  97. Zhang, D., Yan, H., Zhu, Z., et al.: Electrochemical stability of lithium bis(oxatlato) borate containing solid polymer electrolyte for lithium ion batteries. J. Power Sources 196, 10120–10125 (2011)

    Article  CAS  Google Scholar 

  98. Choudhury, S., Stalin, S., Deng, Y., et al.: Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 30, 5996–6004 (2018)

    Article  CAS  Google Scholar 

  99. Seki, S.: Solvent-free 4 V-class all-solid-state lithium-ion polymer secondary batteries. ChemistrySelect 2, 3848–3853 (2017)

    Article  CAS  Google Scholar 

  100. Lin, Y., Cheng, Y., Li, J., et al.: Biocompatible and biodegradable solid polymer electrolytes for high voltage and high temperature lithium batteries. RSC Adv. 7, 24856–24863 (2017)

    Article  CAS  Google Scholar 

  101. Li, Q., Imanishi, N., Hirano, A., et al.: Four volts class solid lithium polymer batteries with a composite polymer electrolyte. J. Power Sources 110, 38–45 (2002)

    Article  CAS  Google Scholar 

  102. Oh, B., Amine, K.: Evaluation of macromonomer-based gel polymer electrolyte for high-power applications. Solid State Ion. 175, 785–788 (2004)

    Article  CAS  Google Scholar 

  103. Kim, H.S., Lee, C.W., Moon, S.I.: Electrochemical performances of lithium-ion polymer battery using LiNi1/3Co1/3Mn1/3O2 as cathode materials. J. Power Sources 159, 227–232 (2006)

    Article  CAS  Google Scholar 

  104. Kim, H.S., Kim, S.I., Lee, C.W., et al.: Preparation of lithium-ion polymer battery using LiNi1/3Co1/3Mn1/3O2 as a cathode material and its electrochemical properties. J. Electroceram. 17, 673–677 (2006)

    Article  CAS  Google Scholar 

  105. Yun, Y.S., Choi, J.A., Kim, D.W.: Lithium polymer batteries assembled with in situ cross-linked gel polymer electrolytes containing ionic liquid. Macromol. Res. 21, 49–54 (2013)

    Article  CAS  Google Scholar 

  106. Xia, C., Baek, B., Xu, F., et al.: Modification of electrolyte transport within the cathode for high-rate cycle performance of Li-ion battery. J. Solid State Electrochem. 17, 2151–2156 (2013)

    Article  CAS  Google Scholar 

  107. Park, B., Lee, C.H., Xia, C., et al.: Characterization of gel polymer electrolyte for suppressing deterioration of cathode electrodes of Li ion batteries on high-rate cycling at elevated temperature. Electrochim. Acta 188, 78–84 (2016)

    Article  CAS  Google Scholar 

  108. Kobayashi, T., Kobayashi, Y., Tabuchi, M., et al.: Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2. ACS Appl. Mater. Interfaces. 5, 12387–12393 (2013)

    Article  CAS  PubMed  Google Scholar 

  109. Kobayashi, Y., Shono, K., Kobayashi, T., et al.: A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte. J. Power Sources 341, 257–263 (2017)

    Article  CAS  Google Scholar 

  110. Chen, K., Shen, Y., Jiang, J., et al.: High capacity and rate performance of LiNi0.5Co0.2Mn0.3O2 composite cathode for bulk-type all-solid-state lithium battery. J. Mater. Chem. A 2, 13332–13337 (2014)

    Article  CAS  Google Scholar 

  111. Shono, K., Kobayashi, T., Tabuchi, M., et al.: Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells: application to solvent-free lithium ion polymer batteries. J. Power Sources 247, 1026–1032 (2014)

    Article  CAS  Google Scholar 

  112. Chaudoy, V., Ghamouss, F., Luais, E., et al.: Cross-linked polymer electrolytes for Li-based batteries: from solid to gel electrolytes. Ind. Eng. Chem. Res. 55, 9925–9933 (2016)

    Article  CAS  Google Scholar 

  113. Gao, Y., Zhao, Y., Li, Y.C., et al.: Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017)

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, H.P., Zhang, P., Sun, M., et al.: A gelled polymer electrolyte with the blend of PMMA and PVDF of novel stick-like morphology. Z. Phys. Chem. 221, 1039–1047 (2007)

    Article  CAS  Google Scholar 

  115. Hu, P., Zhao, J.H., Wang, T.S., et al.: A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery. Electrochem. Commun. 61, 32–35 (2015)

    Article  CAS  Google Scholar 

  116. Lee, E.H., Park, J.H., Cho, J.H., et al.: Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl) phosphate) gel polymer electrolytes on high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes. J. Power Sources 244, 389–394 (2013)

    Article  CAS  Google Scholar 

  117. Zeng, X.X., Yin, Y.X., Li, N.W., et al.: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 138, 15825–15828 (2016)

    Article  CAS  PubMed  Google Scholar 

  118. Li, X., Qian, K., He, Y.B., et al.: A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J. Mater. Chem. A 5, 18888–18895 (2017)

    Article  CAS  Google Scholar 

  119. Jung, Y.C., Park, M.S., Kim, D.H., et al.: Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries. Sci. Rep. 7, 17482 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tillmann, S.D., Isken, P., Lex-Balducci, A.: Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties. J. Power Sources 271, 239–244 (2014)

    Article  CAS  Google Scholar 

  121. Chai, J., Liu, Z., Zhang, J., et al.: A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces. 9, 17897–17905 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)

    Article  CAS  Google Scholar 

  123. Reale, P., Privitera, D., Panero, S., et al.: An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performance and analysis of the electron conductivity properties of LiCo0.33Mn0.33Ni0.33O2. Solid State Ion. 178, 1390–1397 (2007)

    Article  CAS  Google Scholar 

  124. Li, Z.H., Zhang, H.P., Zhang, P., et al.: Macroporous nanocomposite polymer electrolyte for lithium-ion batteries. J. Power Sources 184, 562–565 (2008)

    Article  CAS  Google Scholar 

  125. Yun, Y.S., Kim, J.H., Lee, S.Y., et al.: Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes. J. Power Sources 196, 6750–6755 (2011)

    Article  CAS  Google Scholar 

  126. Hofmann, A., Schulz, M., Hanemann, T.: Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim. Acta 89, 823–831 (2013)

    Article  CAS  Google Scholar 

  127. Ju, S.H., Lee, Y.S., Sun, Y.K., et al.: Unique core–shell structured SiO2(Li+) nanoparticles for high-performance composite polymer electrolytes. J. Mater. Chem. A 26, 395–401 (2013)

    Article  Google Scholar 

  128. Manikandan, P., Kousalya, S., Periasamy, P.: Physicochemical characteristics of poly(vinylidene fluoride-hexafluoropropylene)–alumina for mesocarbon microbeads versus LiNi1/3Mn1/3Co1/3O2 Li-ion polymer cells. J. Phys. Chem. Solids 74, 1492–1498 (2013)

    Article  CAS  Google Scholar 

  129. Yang, C.C., Lian, Z.Y., Lin, S.J., et al.: Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium-polymer batteries. Electrochim. Acta 134, 258–265 (2014)

    Article  CAS  Google Scholar 

  130. Kim, K.W., Kim, H.W., Kim, Y., et al.: Composite gel polymer electrolyte with ceramic particles for LiNi1/3Mn1/3Co1/3O2–Li4Ti5O12 lithium ion batteries. Electrochim. Acta 236, 394–398 (2017)

    Article  CAS  Google Scholar 

  131. Kong, J.Z., Xu, L.P., Wang, C.L., et al.: Facile coating of conductive poly(vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery. J. Alloys Compd. 719, 401–410 (2017)

    Article  CAS  Google Scholar 

  132. Zhang, S.S., Fan, X., Wang, C.: Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive. J. Mater. Chem. A 6, 10755–10760 (2018)

    Article  CAS  Google Scholar 

  133. Panero, S., Satolli, D., D’Epifano, A., et al.: High voltage lithium polymer cells using a PAN-based composite electrolyte. J. Electrochem. Soc. 149, A414–A417 (2002)

    Article  CAS  Google Scholar 

  134. Shin, W.K., Cho, J., Kannan, A.G., et al.: Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 6, 26332 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Park, S.R., Jung, Y.C., Shin, W.K., et al.: Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J. Membr. Sci. 527, 129–136 (2017)

    Article  CAS  Google Scholar 

  136. Park, J.H., Cho, J.H., Kim, S.B., et al.: A novel ion-conductive protection skin based on polyimide gel polymer electrolyte: application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 22, 12574–12581 (2012)

    Article  CAS  Google Scholar 

  137. l’Abee, R., DaRosa, F., Armstrong, M.J., et al.: High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. J. Power Sources 345, 202–211 (2017)

    Article  CAS  Google Scholar 

  138. Gupta, S.K., Jha, P., Singh, A., et al.: Flexible organic semiconductor thin films. J. Mater. Chem. C 3, 8468–8479 (2015)

    Article  CAS  Google Scholar 

  139. Zhang, P., Zhang, L., Ren, X., et al.: Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2–PPy composites cathode materials for lithium-ion battery. Synth. Met. 161, 1092–1097 (2011)

    Article  CAS  Google Scholar 

  140. Xiong, X., Ding, D., Wang, Z., et al.: Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J. Solid State Electrochem. 18, 2619–2624 (2014)

    Article  CAS  Google Scholar 

  141. Wu, C., Fang, X., Guo, X., et al.: Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J. Power Sources 231, 44–49 (2013)

    Article  CAS  Google Scholar 

  142. Wang, D., Li, X., Wang, Z., et al.: Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. Electrochim. Acta 196, 101–109 (2016)

    Article  CAS  Google Scholar 

  143. Gao, Y., Yi, R., Li, Y.C., et al.: General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable li-alloy anodes. J. Am. Chem. Soc. 139, 17359–17367 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Fund for Distinguished Young Scholars (51625204), the Key Research and Development Plan of Shandong Province P. R. China (2017GGX40119), the National Natural Science Foundation of China (51703236 and 51803230), the Youth Innovation Promotion Association of CAS (2016193), and the National Key R&D Program of China (Grant No. 2018YFB0104300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, J., Ma, J. et al. Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries. Electrochem. Energ. Rev. 2, 128–148 (2019). https://doi.org/10.1007/s41918-018-00027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-00027-x

Keywords

Navigation