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Abstract
An efficient stability analysis contributes to the improvement of machining stability and chatter suppression. First, this 
paper presents three chatter detection approaches that were developed on the application of wavelet transforms. Second, the 
feasibility of the methods for chatter detection is verified by combining numerical simulations and experimental research. 
Finally, the recognition performance of the three methods is compared. The analysis results indicate that the proposed three 
methods can distinguish different machining states. The p-leader multifractal method (PLMM) provides the best recognition 
performance but takes the longest time, the wavelet leader multifractal method (WLMM) comes second, and the wavelet 
packet method (WPM) is the worst but takes the shortest amount of time. Therefore, the PLMM can be used for identifying 
signals with high accuracy requirements, whereas the WLMM or WPM can be used otherwise.

Highlights

•  Three methods for judging the stability of micro milling 
process are proposed by using wavelet packet method 
(WPM), wavelet leaders multifractal method (WLMM) 
and p-leader multifractal method (PLMM).

•  The feasibility of WPD, WLMM, and PLMM in stability 
analysis was preliminarily verified through numerical 
simulation.

• The recognition performance of WPD, WLMM, and 
PLMM for chatter detection is compared.

Keywords Chatter · PLMM · WLMM · WPM

1 Introduction

Chatter is a self-excited vibration of a tool–workpiece sys-
tem that often occurs in high-speed milling. It is the main 
cause of instability in the machining process. The chatter 
frequency is close to the natural frequency of a machine 
system when chatter happens [1]. Chatter not only restricts 
machining precision and efficiency but also causes tool wear 
and even breakage [2]. Thus, chatter detection methods are 
of great importance for solving the chatter problem and 
greatly contribute to the development of intelligent machine 
tools and manufacturing techniques [3].

Scholars have proposed many chatter detection methods 
in the past decades, which are mainly divided into three 
types, i.e., time-domain (TD) analysis, frequency-domain 
(FD) analysis, time–frequency-domain analysis [4]. It is 
difficult to highlight the signal characteristics of transient 
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sudden changes due to the TD and FD analysis focusing on 
the whole signal. The time–FD analysis provides a good 
solution to this problem, in which the wavelet transform 
(WT) is widely utilized. The WT is developed based on the 
fast Fourier transform and has a good partial characteriza-
tion performance [5]. The wavelet packet transform devel-
ops and extends the WT to refine and reconstruct signals, 
which has been applied for extracting signal features. With 
a weighting of the energy for the frequency band containing 
chatter information, Sun [6] presented a real-time chatter 
monitoring approach based on the weighted wavelet packet 
entropy, which is highly sensitive to energy variations 
caused by chattering. Zhang et al. [7] proposed a chatter 
recognition approach during milling based on the energy 
entropy of variational mode decomposition and wavelet 
packet decomposition (WPD). Based on the relative wavelet 
packet energy entropy, Yao et al. [8] proposed a real-time 
monitoring method for tool chatter on computer numerical 
control (CNC) machines. Hao et al. [9] proposed a novel 
chatter detection methodology based on WPD and energy 
entropy for multi-source signal fusion, which can effectively 
identify early chatter and different levels of chatter.

The fractional analysis method has been gradually 
developed and applied based on WTs. Ji et al. [10] applied 
a single-fractal analysis for chatter detection. The mul-
tifractal analysis method can fully show the singularity 
distribution of signals and describe local-scale behaviors 
more accurately compared with a single-fractal analysis. 
Wavelet transform modulus maxima (WTMM) and multi-
fractal detrended fluctuation analysis (MF-DFA) are two 
typical multifractal methods that are often used in bearing 
fault diagnosis. Wang et al. [11] proposed a chatter detec-
tion method based on WTMM. Liu [12] suggested a bear-
ing fault diagnosis approach based on MF-DFA.

Lashermes et al. [13] proposed a new multifractal anal-
ysis method based on wavelet leaders, which has solid the-
oretical mathematical support and avoids complex calcula-
tions. This new method provides a powerful way to extract 
multifractal features, which has been successfully applied 
for the fault diagnosis of rotating mechanisms [14], heart 
rate variability (HRV) [15], and structural damage detec-
tion [16].

Leonarduzzi et al. [17] introduced an additional param-
eter p based on wavelet leaders and proposed a p-leader 
multifractal method to significantly improve the perfor-
mance of the multifractal spectrum evaluation. Currently, 
the method is used for HRV classification [18], acidosis 
detection [19], and chatter detection [20]. All the methods 
described above are based on the WT, of which WTMM, 
MF-DFA, wavelet leader multifractal method (WLMM), 
and p-leader multifractal method (PLMM) belong to 
the multifractal analysis category, whereas the others 

(including the wavelet packet method (WPM)) fall under 
the WPD category.

Despite the considerable research efforts by scholars in 
chatter recognition, there is still a great gap in comparing 
the evaluation performance of chatter detection methods, 
which limits their industrial application to some extent. In 
this study, we analyze the feasibility of using the WPM, 
WLMM, and PLMM in chatter detection and compare 
their recognition performance. This study will also lay a 
fundamental reference for the selection of chatter detection 
methods in the future. The rest of this paper is organized 
as follows: Sect. 2 describes the basic theory of the WPM, 
WLMM, and PLMM; Sect. 3 presents the numerical simu-
lation, feasibility, and comparison of the WPM, WLMM, 
and PLMM for chatter detection; and Sect. 4 outlines some 
conclusions.

2  Description of the WPM, WLMM, 
and PLMM

2.1  Description of the WPM

2.1.1  WPD

In this paper, X is used to represent signals. X with length 
L can be decomposed at m-level to obtain  2m sets of sub-
signals with length L/2m, and the decomposed sub-signals 
respond to different frequency bands from low to high. 
Let fs be the sampling frequency of signal X, then the 
frequency band of the ith sub-signal can be expressed as 
[(i − 1)fs∕2

m, ifs∕2
m] , where i = 1, 2, 3,… , 2m . The signal X 

can be filtered by high-pass and low-pass filters to obtain two 
sub-signals (Dj and Aj) [21]:

where j is the level of WPD, and h and l represent the high-
pass and low-barrel filters, respectively.

2.1.2  WPD Energy Entropy

The WPD energy entropy can be applied to describe the 
characteristic of a signal. Applying WPD on X can derive a 
series of sub-signals ( x1(t), x2(t), x3(t),… , xn(t) ). The energy 
of each sub-signal ( Ei ) can be obtained by

(1)Dj[i] =

∞∑

k=0

X[k] ⋅ h[2i − k],

(2)Aj[i] =

∞∑

k=0

X[k] ⋅ l[2i − k],
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According to Eq.  (3), the total energy E ( E =
n∑

i=1

Ei ), 

energy ratio �i(�i =
Ei

E
 ) ,  and energy entropy P 

( P =
n∑

i=1

[−�i ln(�i)] ) of the signal can be calculated. The 

energy entropy becomes larger with a uniform energy dis-
tribution and smaller with a concentrated energy distribution 
[22]. Therefore, the energy concentrates at a chatter fre-
quency when chatter occurs, and presumably, the signal will 
have a small entropy value at this time.

2.2  Description of WLMM

2.2.1  Definition of Wavelet Leaders

Selected ψ0(t) as the mother wavelet with a compact time 
support, the positive integer Nψ is a vanishing moment [23] 
�0(t) and N� satisfies the following requirements:

{
�j,k(t) = 2−j∕2�0(2

−jt − k), j, k ∈ Z
}
 is used to represent 

the templates of �0(t) dilated to scales 2j and translated to 
time positions 2jk . Accordingly, they form an orthonormal 
basis of L2(R).

Discrete wavelet transform is performed on signal X 
( X =

{
xk, k ∈ Z

}
 ), and the transform coefficient is as 

follows:

The binary interval is defined as � = �j,k = [k ⋅ 2j,

(k + 1) ⋅ 2j] . Let 3� represent the union of the inter-
val � with its two adjacent merge element intervals: 
3�j,k = �j,k−1 ∪ �j,k ∪ �j,k+1 . The wavelet leaders are defined 
as the local highest values of the wavelet coefficients in the 
3 neighborhood, taking values at all finer scales [13, 24]:

2.2.2  Multifractal Formalism of Wavelet Leaders

Let SL(q, j) denote the wavelet leader-based structure func-
tions and the corresponding scaling exponents are expressed 
as �(q) , where q represents the order magnitude of the mul-
tiresolution quantities [25]:

(3)Ei = ∫
∞

−∞

x2
i
(t)dt (i = 1, 2, 3,… , n)

(4)�
R

t
k�0(t)dt ≡ 0 �

R

t
N� �0(t)dt ≠ 0 (∀k = 0, 1,… ,N� − 1)

(5)cj,k = ∫
R

X(t)2−j�0(2
−jt − k)dt

(6)LX(j, k) ≡ L𝜆 = sup
𝜆�⊂3𝜆

||cX,𝜆� ||

The multifractal spectrum ( D(h) ) can be obtained by 
performing the Legendre transformation on the scaling 
exponents:

2.3  Description of PLMM

2.3.1  Definition of the p‑leader

According to Eqs. (4–6), p-leaders corresponding to the 
signal X are denoted as l(p)

X
(j, k) and used to evaluate 3� 

[26].

Let p > 0, and when p = inf, p-leaders become the clas-
sical wavelet leaders [26]:

2.3.2  Multifractal Formalism of the p‑leader

The p-leader multifractal spectrum of signal X is defined 
as follows:

The pointwise p-exponent hp(x0) at x0 on signal X can 
be expressed as [27, 28]

The multifractal p-spectrum D(p)(h) can be expressed as

Equation (13) shows that the value h of the Hausdorff 
dimension dimH at x0 determines the p-leader multifractal 
spectrum ( D(p)(h)).

SL(p)(j,q) and ζ(p)(q) represent the structure function of 
p-leaders and the scaling function, respectively [17].

(7)SL(q, j) =
1

nj

nj∑

k=1

|
|LX(j, k)

|
|
q

(8)�L(q) = lim inf
j→0

(
log2(SL(q, j))

j

)

(9)D(h) = inf
q≠0(1 + qh − �L(q))

(10)l(p)(j, k) ≡ l
(p)

𝜆
=

⎛
⎜
⎜
⎝

�

j�≤j,𝜆�⊂3𝜆

2d−1�

i=1

���
c
(i)

𝜆

���

p

2−d(j−j
�)

⎞
⎟
⎟
⎠

1∕p

(11)linf(j, k) ≡ l𝜆 = sup
i∈[1,…,2d−1],j�≤j,𝜆�⊂3𝜆

||c𝜆� ||

(12)hp(x0) = lim inf
j→−∞

log(l
(p)

�j,k(x0)
)

log(2j)

(13)D(p)(h) = dimH(
{
x ∈ Rd, hp(x) = h

}
)
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The Legendre transformation can be performed for the 
mapping q → �p(q) to obtain a multifractal formalism of 
the corresponding signal.

When 𝜂x(p) > 0 , ∀h , D(p)(h) ≤ L(p)(h) . �x(p) is the wave-
let scale function, which satisfies the following relation:

It provides practitioners with an upper bound for D(p)(h):

3  Results and Discussion

3.1  Numerical Simulation Analysis

The vibration signals are simulated as follows [29, 30]:

A stable signal is simulated by summing several small-
amplitude sinusoidal signals, as shown in Eq. (19). The three 
terms are used to represent the frequency of tooth passing 
and its harmonics. The weak chatter signal (Eq.( 20)) is sim-
ulated by introducing a small-amplitude sinusoidal signal 
on the basis of another stable signal. As shown in Eq. (21), 
the difference between severe chatter and weak chatter lies 
in the magnitude of the introduced sinusoidal signal. In the 
numerical simulation, the spindle frequency (SF) is 15 Hz, 
and the chatter frequency is 300 Hz.

In this paper, the stable state is defined as the absence 
of chatter frequencies in the spectrum. The main distinc-
tion between weak chatter and severe chatter is that chat-
ter frequencies in the severe chatter spectrum become the 

(14)S
(p)

L
(j, q) = 2dj

∑

k

(l
(p)

j,k
)q (∀q ∈ R)

(15)� (p)(q) = lim inf
j→−∞

log(S
(p)

L
(j, q))

log(2j)
(∀q ∈ R)

(16)L(p)(h) = inf
q∈R

(d + qh − � (p)(q))

(17)𝜂x(p) = lim inf
j→−∞

log(Sc(j, q))

log(2j)
(∀p > 0)

(18)D(p)(h) ≤ L(p)(h) = inf
q∈R

(d + qh − � (p)(q))

(19)XStable = 2 sin(30�t) + 2.5 sin(60�t) + 3 sin(90�t)

(20)

XWeak−Chatter = 3 sin(30�t) + 2.5 sin(60�t) + 2 sin(90�t)

+ 3(1 + 0.6sin(30�t))cos(600�t+1.5sin(30�t))

(21)

XSevere−Chatter = 3 sin(30�t) + 2.5 sin(60�t) + 2 sin(90�t)

+ 15(1 + 0.6sin(30�t))cos(600�t+1.5sin(30�t))

dominant peak and acceleration amplitude dramatically 
changes. Figure 1 shows the TD and FD analyses of the 
simulated signals. The FD of stable signal is the SF, tooth 
passing frequency (TPF), and multiplication of the SF. 
Although the SF, TPF, and 3SF are still the dominant peaks 
in the frequency spectrum when weak chatter occurs, the 
chatter frequency appears at this time. In severe chatter, the 
acceleration dramatically increases, and the dominant fre-
quency of the spectrum becomes the chatter frequency.

The simulated signals are evaluated by the WPM, 
WLMM, and PLMM, as shown in Fig. 2. The frequency 
chosen for the numerical simulation is fs = 1024 Hz, using 
a four-layer wavelet packet for decomposition to obtain 16 
bands. The step length of frequency band is  obtained from 
fs

2×16
 , then the energy information of bands 1, 2, …, 16 cor-

responds to the frequency ranges 0–32, 32–64, …, 
480–512 Hz. Thus, the energy percentage of stable and 
weak chatter signals mainly focus on bands 1 and 2 (SF, 
TPF, and 3SF located in those bands) in Fig. 2a, and the 
partial energy percentage of weak chatter appear in bands 
9 and 10 (chatter frequency located in these bands). Mean-
while, the energy percentage of severe chatter is 

Fig. 1  Time-domain (TD) and frequency-domain (FD) diagrams of 
three simulation signals: a TD of stable signal, b FD of stable signal, 
c TD of weak chatter signal, d FD of weak chatter signal, e TD of 
severe chatter signal, and f FD of severe chatter signal

Fig. 2  Analysis results of the three feature extraction methods for 
simulation signals: a Wavelet packet method (WPM), b Wavelet 
leader multifractal method (WLMM), and c p-leader multifractal 
method (PLMM)
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concentrated in bands 9 and 10. Therefore, it is assumed 
that significant chatter can be identified by the energy 
percentage.

The multifractal spectrum presents different spectral 
patterns under different p values in PLMM. The p values 
chosen in this study are 1, 2, 4, and inf. When p = inf, 
PLMM becomes WLMM, as mentioned in Eq. (11). Fig-
ure 2b shows different signals with different Δh , which are 
the largest in severe chatter signal and the smallest in sta-
ble signal. In the p-leader multifractal spectrum (Fig. 2c), 
the phenomenon of Δh(p) still exists because PLMM is 
improved based on WLMM. Additionally, the spectral 
wires show a shift to the right in weak chatter and severe 
chatter signals and to the left in stable signal.

The simulated signals are periodic and cannot fully 
demonstrate the pattern recognition performance of frac-
tal analysis methods. In the following sections, the feature 
extraction performance of the three methods will be ana-
lyzed with experiments.

3.2  Experimental Setup

A five-axis CNC machining center (Decklemacheo DMU-
P60, shown in Fig. 3) was selected for the milling of AISI-
1040. The cutting tool is a two-flute end-milling cutter with 
a helix angle of 30° and an approximate rake angle of 10°. 
Two ICP accelerometers (sensitivity of 100 mV/g) were used 
to collect X- and Y-direction vibration signals. The chatter 
frequency of the machining system is 1344 Hz [20].

3.3  TD and FD Analysis of the Experimental Tests

The acceleration signals in the X-direction of the three tests 
(stable signal (14,000 rpm, 0.5 μm/tooth), weak chatter 

(10,000 rpm, 2 μm/tooth), and severe chatter (14,000 rpm, 
1 μm/tooth)) were selected for the study, as shown in Fig. 4. 
In Fig. 4a, b, the cutting process lasts from 10–44 s with 
an acceleration amplitude of approximately 3.8 m/s2. The 
dominant peak occurs at SF, TPF, and other peaks, which 
are integer multiples of SF. As shown in Fig. 4c, d, although 
the weak chatter test and stable test have similar accelera-
tion values, there is a dominant peak in the FD close to the 
chatter frequency of 1325 Hz. In addition, the difference 
between peaks 1666, 1495, and 1325 Hz happens to be the 
SF, which indicates that the spindle rotation underwent mod-
ulation. Figure 4c, e show that the TDs of the severe chat-
ter test and weak chatter test are significantly different, and 
the acceleration amplitude in the chatter zone significantly 
increases (close to 25 m/s2). Figure 4f shows the chatter 
frequency, where the difference between peaks 1557, 1323, 
and 1090 Hz is the SF, which is similar to weak chatter.

3.4  WPM for Chatter Detection

Figure  5 illustrates the energy percentage and WPD 
energy entropy for the three tests. In Fig. 5a, the energy 
percentage of weak chatter and severe chatter are mainly 

Fig. 3  Experimental setup

Fig. 4  Time-domain (TD) and frequency-domain (FD) diagrams of 
the three tests: a TD of stable signal, b FD of stable signal, c TD of 
weak chatter signal, d FD of weak chatter signal, e TD of severe chat-
ter signal, and f FD of severe chatter signal

Fig. 5  Energy percentage and wavelet packet decomposition (WPD) 
energy entropy for the three tests: a Energy percentage and b WPD 
energy entropy
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concentrated in bands 4–6 (the bands where the chat-
ter frequency is located), which are 0.29, 0.14, and 0.41 
and 0.49, 0.09, and 0.34, respectively, indicating that the 
energy of signal is attracted to the vicinity of the chat-
ter frequency when chatter occurs. In Fig. 5b, the WPD 
energy entropy gradually decreases with the increase 
in signal instability, reaching the highest value of 2.54 
in stable signal and the lowest value of 1.34 in severe 
chatter.

Therefore, the WPM can identify the processing state 
by analyzing the energy percentage and WPD energy 
entropy of the signal. However, the analysis needs to be 
combined with the chatter frequency, and the fluctuating 
value energy entropy cannot be extracted as a specific 
index. Hence, this method cannot accurately identify sta-
ble signals, weak chatter, and severe chatter, and the chat-
ter recognition performance would be poor.

3.5  WLMM for Chatter Detection

The WLMM was performed for the three tests, and the 
results are shown in Fig. 6. The spectral width of the mul-
tifractal spectrum represents the singularity of a signal, 
whereas a greater singularity represents a larger spectral 
width. In this paper, the spectral width is denoted by Δh . As 
shown in Fig. 6, Δh of the stable test is smaller than that of 
the chatter test. In addition, D(hmin) > D(hmax) for the stable 
and weak chatter tests.

Thus, this method can accurately recognize the severe 
chatter by analyzing D(hmin) and D(hmax) . However, it can 
only make a simple difference between stable and weak 
chatter by Δh with low precision. Evidently, the method has 
some advantages over the WPM in detecting severe chatter.

3.6  PLMM for Chatter Detection

The p-spectrum of the stable test is close to a normal distri-
bution, as presented in Fig. 7a. The p spectra first moved to 
the left and then to the right as p increased, which indicates 
a poor dependence of the stable test on p values. As shown 
in Figs. 7b, c, the p spectra of weak chatter and severe chat-
ter show a significant movement toward the large value of 
h when the p value increases from 1 to inf, which indicates 
that the chatter tests have a significant dependence on the 
p value.

Based on the data in Fig. 7, Table 1 shows the param-
eter indexes of the three tests. Δh(p) of the stable test is 
smaller than those of the weak chatter and severe chatter 
test under different p values, which suggests that the chat-
ter signals have a greater singularity. For all spectral wires, 
D(p)(hmin) > D(p)(hmax) for the stable and weak chatter tests, 
whereas D(p)(hmin) < D(p)(hmax) for the severe chatter test.

Therefore, we can correctly determine stable, weak 
chatter, and severe chatter by analyzing the movement 
patterns of spectral lines, Δh(p) , D(p)(hmin) and D(p)(hmax) 
in the PLMM.

3.7  Comparison of the WPM, WLMM, and PLMM 
in Chatter Detection

The recognition performance criteria can be determined 
by the ability to accurately identify the processing state, 

Fig. 6  Multifractal spectrum of the wavelet leader for the three tests: 
a Stable, b Weak chatter, and c Severe chatter

Fig. 7  Multifractal spectrum of the p-leader for the three tests: a Sta-
ble, b Weak chatter, and c Severe chatter

Table 1  Parameter indexes under different p values

Cutting condi-
tions

Parameter 
indexes

p = 1 p = 2 p = 4 p = inf

Stable Δh(p) 0.0976 0.0681 0.0690 0.2094
D(p)(hmin) 0.9708 0.9771 0.9763 0.9442
D(p)(hmax) 0.9383 0.9579 0.9577 0.8808

Weak chatter Δh(p) 0.5294 0.5918 0.6314 0.7086
D(p)(hmin) 0.8812 0.8727 0.8692 0.8642
D(p)(hmax) 0.7890 0.7733 0.7677 0.7595

Severe chatter Δh(p) 0.4113 0.4099 0.4188 0.5022
D(p)(hmin) 0.8381 0.8243 0.8125 0.8074
D(p)(hmax) 0.9380 0.9683 0.9770 0.9355

Table 2  Identification performance comparison of the three methods

Stable Weak chatter Severe 
chatter

Time con-
sumption 
( s)

WPM 2 1 2 5–10
WLMM 2 2 3 10–15
PLMM 3 3 3 50– 70



Nanomanufacturing and Metrology            (2023) 6:10  

1 3

Page 7 of 8    10 

which can be represented by 1 for normal, 2 for better, 
and 3 for excellent. Specifically, 1 denoted that the weak 
chatter state cannot be recognized, and 3 indicated that 
stable, weak chatter and severe chatter states can be accu-
rately recognized. 2 indicated that the weak chatter state 
can be identified, but the accuracy cannot be guaranteed. 
For example, the WLMM cannot accurately determine 
whether the processing state is stable or weak chatter 
when Δh lies at an intermediate value. Table 2 shows the 
performance comparison of the three methods proposed in 
this paper for chatter detection. The times required for the 
WPM, WLMM, and PLMM calculations were approxi-
mately 5–10, 10–15, and 50–70 s, respectively, which also 
depends on the length of signals to some extent. Moreo-
ver, the PLMM has the best recognition performance but 
takes the longest time, whereas the WPM has the worst 
recognition performance but takes the shortest time.

4  Conclusions

In this paper, three chatter identification approaches for the 
milling process are presented and compared. To verify the 
discriminative ability of WPM, WLMM, and PLMM for dif-
ferent signals, a numerical simulation was first conducted to 
test their pattern recognition performance. Then, stable, weak 
chatter, and severe chatter tests were performed for the analy-
sis, and the results confirmed that the three methods show 
different results for different signals. The experimental results 
show that the three proposed methods can distinguish differ-
ent machining states. Moreover, the PLMM can effectively 
monitor the occurrence of weak chatter and severe chatter 
and presents the best recognition performance compared to 
WPM and WLMM. In summary, the three approaches can be 
widely utilized in industrial processing operations.
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