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Abstract
Statically indeterminate symmetric (SIS) flexure structures are symmetric structures with “clamped-clamped” boundary conditions. 
The static indeterminacy and topological symmetry significantly attenuate the parasitic motions associated with statically determi-
nate flexure structures. Hence, SIS flexure structures feature decoupled linear and angular motions, improved motion accuracy, high 
stiffness, and high stability. Although SIS flexure structures have been more frequently utilized as prismatic joints, they can also be 
utilized as revolute joints. This study systematically investigates the characteristics of SIS flexure structures. Based on the unified 
compliance models of a single flexure hinge, analytical compliance models of two fundamental types of SIS flexure structures 
are established. In 1-degree-of-freedom or planar applications, multiple SIS-based structures can also be integrated into various 
configurations to transmit linear or angular motions. Corresponding stiffness models are also established. The characteristics and 
possible applications of the SIS flexure structures are computationally investigated through case studies. Ultimately, several SIS 
prototypes are manufactured, and the modeling accuracy of the established stiffness models is experimentally verified.

Highlights

1. SIS flexure structures can reduce parasitic motions and 
improve motion accuracy.

2. Compliance model of two SIS flexure structure are pro-
posed.

3. Characteristics of SIS flexure structures and potential 
applications are analyzed.

Keywords Statically indeterminate structure · Flexure hinge · Compliance modeling · Prismatic joint

1 Introduction

Flexure hinges have been extensively utilized in precision 
positioning and manipulation applications [1–4] because 
they transmit motions through elastic deformations, which 
are free of friction, backlash, and wear. Generally, a flexure-
based mechanism consists of multiple flexure hinges and 
links. Due to the significant stiffness difference between 
flexure hinges and links, the majority of deformations are 
localized within flexure hinges. Based on these characteris-
tics, flexure hinges can be treated as flexible, and adjacent 
links can be treated as rigid. The behavior of a flexure hinge 
is highly dependent on its hinge profile. In planar flexure 
hinge design, common hinge profiles include circular [5, 6], 
elliptical [7–9], leaf-type/corner-fillet [10–12], and V-shaped 
[13]. Recently, more complex hinge profiles [14, 15] have 
also been proposed. The above flexure hinge profiles can 
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only transmit 1-degree-of-freedom (1-DOF) motions. In 
some cases, multi-DOF motions are also available by incor-
porating several planar flexure hinges [16] or utilizing spatial 
flexure hinges [17].

A single flexure hinge is typically utilized as a revo-
lute joint. However, couplings exist between the linear 
and angular motions, and the equivalent rotation center 
drifts when a lateral force is applied, resulting in motion 
errors. To achieve decoupled characteristics and improved 
motion accuracy, multiple flexure hinges can be utilized 
to construct certain types of flexure-based structures. For 
instance, parallelogram-based structures [18, 19] can be 
used as prismatic joints because the angular motion is 
eliminated through the topology. Evidently, in the litera-
ture, a class of flexure-based structures has been receiving 
increasing attention recently [2, 3, 20]. In such structures, 
both ends are clamped, and the structure is symmetric to 
its center. Thus, they are defined as statically indeterminate 
symmetric (SIS) flexure structures in this paper. The appli-
cations of SIS structures include a micropositioning stage 
[21] and a magnetic resonance imaging (MRI) compatible 
force sensor [22]. Due to the topological symmetry, cou-
plings between linear and angular motions associated with 
a single hinge can be eliminated. According to the load 
status, SIS flexure structures can function either as pris-
matic or revolute joints without parasitic motions, which is 
investigated in this work. Due to the static indeterminacy, 
SIS flexure structures also feature high stiffness in in-plane 
and out-of-plane directions. Unlike statically determinate 
structures, the load-deflection relationships of SIS flexure 
structures are nonlinear. Fortunately, in micro/nanoposi-
tioning and manipulation applications, the motion range 
(generally within hundreds of microns) can be regarded as 
infinitesimal when compared with the structural dimension. 
The nonlinearities are minor and can be neglected [23].

For the compliance and stiffness of a single flexure hinge, 
many analytical models have been established. In general, 
the compliance of a flexure hinge can be obtained by utiliz-
ing beam theory [8, 9, 18, 24], empirical equation [5], or 
Castigliano’s second theorem [10, 19]. If the aspect ratio of 
a flexure hinge is high (long and slender), the shear defor-
mation can be neglected, whereas if the aspect ratio of a 
hinge is low (short and thick), the shear deformation needs 
to be taken into consideration. The modeling accuracies of 
the above methodologies were investigated in [25]. For a 
complex flexure mechanism consisting of multiple flexure 
hinges, the pseudo-rigid-body method is also popular [26, 
27].

This work systematically investigates the characteristics 
of SIS flexure structures, including the unified compliance 
modeling of two types of SIS flexure structures and the 
performances of SIS-based revolute and prismatic joints. 
When a lateral force or moment is applied, the central link 

of an SIS flexure structure only experiences linear or angu-
lar deflections, thus acting as an ideal prismatic or revolute 
joint. In addition, the motion accuracy and stability can be 
improved. As the compliance modeling of a single flexure 
hinge has been extensively investigated, a unified shape 
function is adopted. The compliance models of the uni-
fied flexure hinge can be represented by four fundamental 
integrations, as presented in Sect. 2 and the Supplementary 
material. In practice, the compliance of a specific flexure 
hinge is available by replacing the shape function and final-
izing the integration calculations of fundamental integra-
tions. The process is straightforward, and thus it will not be 
pursued in this paper. Utilizing the fundamental integrations, 
the analytical compliance models of two fundamental types 
of SIS flexure structures are established in Sects. 3 and 4. 
Multiple SIS-based structures can also be integrated into 
various configurations to achieve improved performances. 
Ultimately, the characteristics and possible applications of 
the SIS flexure structure are discussed and verified through 
case studies and experiments, as presented in Sect. 5 and 6.

2  Unified Compliance Models 
and Fundamental Integrations

This study only focuses on symmetric hinge profiles where 
the hinge profile is symmetric to the hinge center. Some 
common symmetric hinge profiles are listed in Fig. 1. In this 
work, a unified hinge profile is adopted to establish unified 
compliance models applicable to all symmetric hinge pro-
files. The isometric projection of the unified flexure hinge is 
schematically illustrated in Fig. 2a, where the flexure hinge 
is fixed at one end and free to displace laterally and longitu-
dinally at the other end.

A flexure hinge is a monolithic structure with an out-
of-plane depth of d, a hinge length of 2l0 , and a minimum 
thickness of 2t. A coordinate is located at the hinge center. 
The shape function of the upper profile is denoted as y(x). 
Because the hinge profile is symmetric, y(x) is an even 
function. As illustrated in Fig. 2a, forces and moments are 
applied at the free end: three forces ( Fx,Fy , and Fz ) in the 
x-, y-, and z-axes, respectively, and two moments ( My and 
Mz ) with respect to the y- and z-axes, respectively. This 
study only focuses on the lateral deflection in the x–y and 
x–z planes. Because Mx does not affect the deflections in 
these planes, it is not considered in this study.

Due to the significant stiffness difference between the 
flexure hinge and adjacent link, only the flexure hinge is 
assumed to be flexible to facilitate compliance modeling. 
As illustrated in Fig. 2b, c, the linear deflections of end B in 
the x-, y-, and z-axes are denoted as uB, vB , and wB , respec-
tively, and the angular deflections of end B with respect to 
the y- and z-axes are denoted as �yB and �zB , respectively. 
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In general, there are interferences between the lateral and 
longitudinal deflections. The lateral loads (e.g., Fy and Mz ) 
will cause parasitic longitudinal deflections. Meanwhile, the 
axial load Fx will affect the lateral deflections of the flex-
ure hinge as it influences the inner moment of the flexure 
hinge [28]. However, the interferences are only obvious for 
extremely long and slender beams under large loads [28, 
29]. As the flexure hinge is short and the loads are small in 
micro/nanopositioning and manipulation, the above inter-
ferences are negligible. Therefore, calculating the longi-
tudinal, and lateral deflections independently has become 
common.

2.1  Longitudinal Deflection

In the longitudinal direction (x-axis), the linear deflection of 
point B is defined by the following equation:

(1)uB = ∫
l0

−l0

Fx

EA(x)
dx =

Fx

2Ed ∫
l0

−l0

1

y(x)
dx = FxP1,

where E is the Young’s modulus of the material and A(x) is 
the cross-sectional area of the hinge at position x, as shown 
in Fig. 2a. P1 = (1∕2Ed) ∫ l0

−l0
(1∕y(x))dx is defined as the first 

fundamental integration. It represents the effect of the mate-
rial and geometric properties of the hinges.

In particular, the twist of the hinge around the x-axis is 
ignored in compliance modeling because this DOF is not 
utilized in most flexure hinge structures.

2.2  Lateral Deflection in the x–y Plane

In the lateral direction, Timoshenko beam theory is utilized 
to take the shear deformation into consideration. In the 
x–y plane, as illustrated in Fig. 2b, Fy and Mz cause lateral 
deflections. Based on the static Timoshenko beam theory, 
the deflections of the flexure hinge at position x without axial 
effects are given by the following equations:

where �z(x) and v(x) are the angular deflection about the 
z-axis and linear deflection in the y-axis, respectively; 
Iz(x) and Mz(x) are the second moment of area and bend-
ing moment with respect to the z-axis, respectively; Qy(x) 
is the shear force in the y-axis at position x; G is the shear 
modulus of the material; and � is the Timoshenko shear 
coefficient. For hinges with a rectangular cross section, 
Iz(x) = 2dy3(x)∕3 , and � = 5∕6.

Based on the static equilibrium conditions, the bending 
moment and shear force are obtained as follows:

Based on Eq. (2), point B’s angular deflection about the 
z-axis is given by

where P2 = (3∕2) ∫ l0
−l0

(1∕y3(x))dx is defined as the second 
fundamental integration.

Similarly, based on Eq. (2), point B’s linear deflection in 
y-axis is defined by

(2)

{
EIz(x)

d�z(x)

dx
= Mz(x)

dv(x)

dx
= �z(x) −

Qy(x)

�A(x)G
,

(3)
{

Mz(x) = Mz + Fy

(
l0 − x

)
Qy(x) = −Fy

(4)

�zB = ∫
l0

−l0

Mz(x)

EIz(x)
dx

=
3(Mz + Fyl0)

2Ed ∫
l0

−l0

1

y3(x)
dx −

3Fy

2Ed ∫
l0

−l0

x

y3(x)
dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

=
(
Mz + Fyl0

)
P2,

Circular Eliptical Parabolic

Leaf-type Corner-filleted V-shaped

Fig. 1  Common symmetric hinge profiles

Fig. 2  a Isometric projection of a unified flexure hinge, b deflections 
in the x–y plane, and c deflections in the x–z plane
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where P3 = (3∕2Ed) ∫ l0
−l0

(x2∕y3(x))dx is defined as the third 
fundamental integration. And Ω = E∕(�G) which represents 
the properties of the material.

In summary, Eqs. (4) and (5) can be rewritten in a matrix 
form as follows:

where matrix Cxy is defined as the lateral compliance matrix 
of the flexure hinge in the x–y plane.

2.3  Lateral Deflections in the x–z Plane

The lateral deflections of the flexure hinge in the x–z plane 
are depicted in Fig. 2c. Unlike those in Fig. 2b, the lateral 
deflections in the x–z plane represent the flexure hinge’s out-
of-plane stiffness, which needs to be high to improve the 
stability and load capacity. Based on the static equilibrium 
conditions, the bending moment and shear force relation-
ships at position x can be written as

where My(x) is the bending moment with respect to the 
y-axis and Qz(x) is the shear force in the z-axis.

The same method presented in Sect. 2.2 can be utilized to 
obtain the lateral deflections in the x–z plane. The process is 
straightforward, and thus it is omitted for the conciseness of 
the paper. Point B’s angular and linear deflections in the x–z 
plane are given in the following equations:

(5)

vB = ∫
l0

−l0

�z(x)dx − ∫
l0

−l0

Qy(x)

�GA(x)
dx

= x�z(x)‖l0−l0 − ∫
l0

−l0

xd(�z(x)) +
Fy

2�Gd ∫
l0

−l0

1

y(x)
dx

= l0�zB − ∫
l0

−l0

xMz(x)

EIz(x)
dx + FyΩP1

= l0�zB +
3Fy

2Ed ∫
l0

−l0

x2

y3(x)
dx + FyΩP1

= l0
�
Mz + Fyl0

�
P2 + FyP3 + FyΩP1,

(6)

[
vB
�zB

]
=

[
ΩP1 + l2

0
P2 + P3 l0P2

l0P2 P2

][
Fy

Mz

]

= Cxy

[
Fy

Mz

]
,

(7)
{

My(x) = My − Fz

(
l0 − x

)
Qz(x) = Fz,

(8)�yB =
6(My − Fzl0)

Ed3 ∫
l0

−l0

1

y(x)
dx = (My − Fzl0)

12P1

d2
,

where P4 = (6∕Ed3) ∫ l0
−l0

(x2∕y(x))dx is defined as the fourth 
fundamental integration. As Fig. 2c illustrates, the sign dif-
ference between �yB and wB must be noted.

In summary, Eqs. (8) and (9) can also be rewritten in a 
matrix form:

where matrix Cxz is defined as the lateral compliance matrix 
of the flexure hinge in the x–z plane.

In particular, Eqs. (1), (6), and (10) represent unified com-
pliance models. For a given hinge profile, one only needs to 
substitute the specific shape function and finalize the inte-
grations of P1–P4 . Thus, these integrations are defined as the 
fundamental integrations of a hinge profile. The calculations 
of these fundamental integrations are purely mathematical, 
and thus they will not be pursued herein. However, the exact 
expressions for the fundamental integrations of some com-
mon profiles are provided in the Supplementary material.

A single flexure hinge is frequently utilized as a revo-
lute joint to transmit angular motions about the z-axis. In 
this case, the angular compliance with respect to the z-axis 
(i.e., �zB∕Mz ) should be high, whereas the longitudinal and 
out-of-plane compliance should be low to suppress all the 
off-axis motions. However, Eq. (6) reveals a disadvantage of 
a single flexure hinge: the equivalent rotation center drifts 
when a lateral force is applied [12, 13]. Taking the lateral 
compliance matrix Cxy as an example, the difference between 
Cxy(1, 1) and Cxy(2, 1) indicates that the drift of the equiva-
lent rotation center causes an additional linear compliance 
of ΩP1 + P3 at point B. This inevitable motion error is unde-
sirable in ultra-precision applications. In practice, multiple 
flexure hinges can be combined in various configurations to 
improve motion accuracy, such as parallelogram structures 
[2, 19]. However, these parallelogram-based structures can 
only transmit linear motions. In the literature, SIS flexure 
structures have been widely utilized [2, 3, 7]. From the struc-
tural point of view, these SIS flexure structures can be clas-
sified into two fundamental types, which will be systemati-
cally investigated in the subsequent sections.

(9)
−wB = l0�yB −

6Fz

Ed3 ∫
l0

−l0

x2

y(x)
dx −

Fz

2�Gd ∫
l0

−l0

1

y(x)
dx

=
(
My − Fzl0

)12l0P1

d2
− FzP4 − FzΩP1,

(10)

[
wB

�yB

]
=

[
(Ω +

12l2
0

d2
)P1 + P4

−12l0

d2
P1

−12l0

d2
P1

12

d2
P1

][
Fz

My

]

= Cxz

[
Fz

My

]
,
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3  SIS Flexure Structure Type I

Figure 3a depicts the schematic diagram of the SIS flexure 
structure type I (hereafter denoted as SIS-I). A central link 
is connected to the fixed boundary through two identical 
flexure hinges. A coordinate is located at the center point of 
the central link, and the same external loads as in Fig. 2a are 
applied at point O. Compared with a single flexure hinge, the 
distinct characteristics of SIS-I include very high stiffness 
and improved motion accuracy. Theoretically, due to the top-
ological symmetry, if a lateral force or moment is applied, 
the central link will only experience linear or angular deflec-
tions, functioning as an ideal prismatic or revolute joint.

In the longitudinal direction, SIS-I is equivalent to two flex-
ure hinges connected in parallel. As a result, the longitudinal 
compliance will be reduced by half. Based on Eq. (1), the 
longitudinal deflection is given below:

As both ends are clamped, axial tension is inevitable when 
lateral loads are applied, resulting in a nonlinear load-deflec-
tion relationship. Based on our previous research [23], the 
nonlinearity is obvious only when the deformations are 
large. In practice, the motion range of a flexure-based mech-
anism is generally on the micron scale, and the nonlinearity 
caused by the axial tension is negligible [29]. Based on the 

(11)uO = FxP1∕2

above assumption, the loads and reactions in the x–y and x–z 
planes are illustrated in Fig. 3b, c, respectively. As the axial 
tension is neglected, SIS-I can be treated as a linear system, 
and the boundary condition of SIS-I can be regarded as a 
“clamped slide” during the lateral compliance modeling. In 
addition, linear superposition can be utilized to facilitate 
compliance modeling.

3.1  Lateral Deflections in the x–y Plane

In the x–y plane, based on the static equilibrium conditions, 
the following equations are obtained:

As there are four unknown variables, this type of structure is 
statically indeterminate to the second degree. The reactions 
of SIS-I can be solved using the flexibility method. The flex-
ibility method involves removing the constraints from point 
D and treating the reactions FDy and MDz as additional loads. 
This transformation results in a statically determinate struc-
ture. Based on the compatibility equations, the transformed 
structure should satisfy the following boundary conditions 
at point D:

Based on Eq. (6), the lateral deflections of the transformed 
structure can be obtained using the linear superposition 
method. The process is straightforward, and the following 
equations are obtained:

where MA1 = Mz +MDz + Fvl1 + 2FDv(l0 + l1).
Combining Eqs. (12)–(14), the reactions in the x–y plane 

are calculated to be

where a1 = (l0 + l1)P2, b1 = ΩP1 + (l0 + l1)
2P2 + P3.

(12)
{

Fy + FAy + FDy = 0

Mz −MAz +MDz − (FAy − FDy)(2l0 + l1) = 0

(13)vD = 0, �zD = 0

(14)

[
vD
�zD

]
=

hinge 1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
1 2

(
l0 + l1

)
0 1

]
Cxy

[
Fy + FDy

MA1

]

+

hinge 2

⏞⏞⏞⏞⏞⏞⏞⏞⏞

Cxy

[
FDy

MDz

]
,

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

FAy = −
1

2
Fy +

a1

2b1
Mz

FDy = −
1

2
Fy −

a1

2b1
Mz

MAz =
l0

2
Fy +

a1−b1(2l0+l1)
2b1

Mz

MDz =
l0

2
Fy −

a1−b1(2l0+l1)
2b1

Mz,

Fig. 3  SIS flexure structure type I (SIS-I): a schematic diagram, b 
loads and reactions in the x–y plane, and c loads and reactions in the 
x–z plane
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Subsequently, the linear and angular deflections of the 
central link are given below:

Comparing Eq. (16) with Eq. (6), the linear and angular 
compliances in the x–y plane are significantly reduced, 
resulting in a very high stiffness. As the central link is 
assumed to be rigid, the parameter l1 has no influence on 
the linear compliance in the y-axis. Due to the topological 
symmetry, there are no off-diagonal quantities in Eq. (16). 
As a result, SIS-I can function as a prismatic joint [30] or 
revolute joint [31].

Figure 4a depicts the schematic diagram of a prismatic 
joint (half of SIS-I). When Fy is applied, SIS-I is equivalent 
to two replicates of this prismatic joint connected in paral-
lel. An example of using the SIS-I structure as a prismatic 
joint is the micropositioning stage in [21]. Figure 5a illustrates 
the schematic diagram of a revolute joint (half of SIS-I). Its 
application can be found in the MRI-compatible force sensor 
in [22]. When Mz is applied, SIS-I is equivalent to two repli-
cates of this revolute joint connected symmetrically about the 
z-axis. Thus, the two equivalent structures can be treated as the 
building blocks of SIS-I. As they are only half of SIS-I, their 
corresponding linear and angular compliances are twice that 
of SIS-I. Based on the reciprocal relationship between compli-
ance and stiffness, the linear stiffness of the prismatic joint in 
Fig. 4a is derived from Eq. (16) and given below:

Similarly, the angular stiffness of the revolute joint in Fig. 5a 
is derived:

(16)

[
vO
�zO

]
=

[
1 l1
0 1

]
Cxy

[
Fy + FDy

MA1

]

=
ΩP1 + P3

2b1

[
b1 0

0 P2

][
Fy

Mz

]

(17)kp =
Fy

vO
=

1

ΩP1 + P3

(18)k� =
Mz

�zO
=

b1(
ΩP1 + P3

)
P2

When a prismatic joint is desired, multiple SIS-I-based 
structures can be cascaded linearly along the y-axis [19] or 
symmetrically about the y-axis [32], as illustrated in Fig. 4b, 
c, respectively. In Fig. 4b, each replicate can be identical or 
different, whereas the replicates in Fig. 4c should be identi-
cal. Compared with the basic SIS-I in Fig. 3, if m > 1 and 
n > 2 , the angular stiffness will be significantly improved, 
suppressing the unwanted rotations. Based on Eq.  (17), 
the corresponding linear stiffness of the prismatic joints in 
Fig. 4b, c are given in the following equations:

where m and n are the numbers of replicates, as shown in 
Fig. 4b, c, respectively.

When a revolute joint is desired, p identical replicates can 
be arranged symmetrically about the z-axis, as illustrated in 
Fig. 5b. In this case, if p > 2 , the linear motions will be sig-
nificantly attenuated. Based on Eq. (18), the angular stiffness 
is expressed as follows:

3.2  Lateral Deflections in the x–z Plane

The loads and reactions in the x–z plane are shown in 
Fig. 3c. The following equations are derived from the 
static equilibrium conditions:

Similar to Sect. 3.1, to solve the statically indeterminate 
problem, the constraints are removed from point D, and the 
following equations are obtained from the compatibility 
equations:

(19)
{ [

kp
]
m
= 2

(
kp1 + kp2 +…+ kpm

)
, m ≥ 1[

kp
]
n
= n ⋅ kp, n ≥ 2

,

(20)
[
kr
]
p
= p ⋅ kr, p ≥ 2

(21)
{

Fz + FAz + FDz = 0

My +MAy −MDy + (FAz − FDz)(2l0 + l1) = 0

Fig. 4  a Equivalent structure of SIS-I under a force in the y-axis, b 
prismatic joint through a linear combination along the y-axis, and c 
prismatic joint through a symmetric combination about the y-axis

Fig. 5  a Equivalent structure of SIS-I under a moment about the 
z-axis and b revolute joint through a symmetric combination about 
the z-axis
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where MA2 = My −MDy − Fzl1 − 2FDz(l0 + l1) . Combining 
Eqs. (21) and (22), the reactions in the x–z plane are calcu-
lated to be

where a2 = 6
(
l0 + l1

)
P1, b2 =

[
Ωd2 + 12

(
l0 + l1

)2]
P1 + d

2
P4

 . Subse-
quently, the linear and angular deflections of the central link 
are derived:

For SIS-I, its linear compliance in the y-axis and angular 
compliance about the z-axis are the DOFs, and thus low 
stiffness is required in the two directions. On the contrary, 
SIS-I’s compliances in the other directions are the degrees of 
constraints, so high stiffness is preferred in these directions. 
Equations (11), (16), and (24) provide analytical compliance 
models of SIS-I, and thus they can be utilized to facilitate 
the design and optimization.

3.3  Computational Investigations

The linear compliance in the y-axis and the angular com-
pliance about the z-axis are investigated. The two most 
widely utilized hinge profiles are adopted: right circular 
and leaf-type profiles. As listed in the Supplementary mate-
rial, the fundamental integrations of the right circular pro-
file can be derived from those of the elliptical profile by 
letting � = � = 1 and introducing R = b = a (the radius of 
the circular arc). Similarly, the fundamental integrations 
of the leaf-type profile can be derived from those of the 
corner-filleted profile with R = 0 . For flexure hinges, the 
modeling accuracy is highly dependent on the geometric 
parameters, as reported in [25]. Therefore, it is necessary to 
evaluate the modeling accuracy of the established compli-
ance models across the variation ranges of the geometric 
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parameters. The variation ranges are listed in Table 1, which 
form the design space for SIS-I. Hence, a specific SIS-I can 
be represented by a design point in the design space. A non-
dimensional parameter � = t∕b is introduced to character-
ize the aspect ratio of the right circular profile. Similarly, 
a non-dimensional parameter � = t∕l0 is introduced for the 
leaf-type profile.

Finite element analysis (FEA) is carried out to obtain the 
SIS-I compliance across the design space. The material is 
assumed to be an aluminum alloy with a Young’s modulus 
of 72 GPa, a density of 2.7 × 103 kg/m3 , a Poisson’s ratio of 
0.3, and a yield strength of 434 MPa. The FEA models for 
the two profiles are illustrated in Fig. 6a, and 7a, respec-
tively. Each FEA model is clamped at both ends, and lateral 
loads are exerted at the center point of the central link. The 
flexure hinge is meshed with fine grids, and the elements are 
aligned to the shape of the hinge to improve accuracy. To 
guarantee the resultant deformations with a small deflection 
range, a lateral force of 10 N and a lateral moment of 1 Nm 
are adopted to derive the linear compliance in the y-axis and 
angular compliance with respect to the z-axis, respectively. 
Subsequently, the modeling error is defined as the relative 
difference between the analytical and FEA results.

Response surface methodology (RSM) [33] using a three-
factor five-level central composite design is adopted to ana-
lyze the modeling error across the design space. Only 15 
design points are required using RSM, and the relationships 
between the modeling error and geometric parameters can 
be represented by a quadratic equation.

The computational results for SIS-I with the right cir-
cular profile are presented in Fig. 6b, c. The modeling 
error for the linear compliance is between − 9.63% and 
9.16%. The largest modeling errors occurs at R = 7.29 mm, 
� = 0.03, l1 = 15 mm. The influence of the non-dimensional 
geometric parameter � is significant because the modeling 
errors of the fundamental integrations are highly dependent 
on � , as reported in [25]. During analytical modeling, the 
central link is assumed to be rigid. As a result, the linear 
compliance of the central link is not taken into considera-
tion in Eq. (16). However, the central link is flexible, and its 
compliance (although small compared to that of the hinge) 
will also increase the modeling error. Compared with � , the 
influences of R and l1 are moderate. The modeling error of 
the angular compliance is between − 9.75% and 16.79%. The 
largest modeling error occurs at R = 9 mm, � = 0.05 , and 
l1 = 15.71 mm. In the error plot, the modeling error of the 
angular compliance is clearly sensitive to all the geometric 
parameters.

The computational results for SIS-I with the leaf-type 
profile are presented in Fig. 7b, c. For linear compliance, 
the modeling error is between − 10.92% and 6.88%. The 
largest modeling error occurs at l0 = 3 mm, � = 0.03 , and 
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l1 = 25 mm. For angular compliance, the modeling error is 
between − 9.31% and 5.01%. The largest modeling error 
occurs at l0 = 3 mm, � = 0.03 , and l1 = 15 mm. Similar 

to the right circular profile, when l0 is large, the analytical 
model will overestimate the linear and angular compliance. 
In addition, the relationships between the modeling error and 
geometric parameters are similar for the linear and angular 
compliances. The modeling errors are sensitive to l0 and � , 
whereas the influence of l1 is not obvious. This outcome is 
reasonable as the stiffness difference between the flexure 
hinge and central link is more significant in the leaf-type 
profile than in a right circular profile with the same hinge 
length and minimum thickness. Thus, the influence of the 
central link can be reduced in leaf-type profiles.

Fig. 6  SIS-I with a right circular profile: a FEA model, b modeling 
error of the linear compliance, and c modeling error of the angular 
compliance

Table 1  Variation ranges of the parameters

Right circular Range Leaf-type Range

R (mm) 3–15 l0 (mm) 3–15
� (–) 0.03–0.06 � (–) 0.03–0.06
l1 (mm) 15–25 l1 (mm) 15–25
d (mm) 10 d (mm) 10

Fig. 7  SIS-I with a leaf-type profile: a FEA model, b modeling error 
of the linear compliance, and c modeling error of the angular compli-
ance
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For a given SIS-I with right circular or leaf-type profiles, 
Figs. 6 and 7 can be utilized as a reference to estimate the 
modeling error of the linear and angular compliances.

4  SIS Flexure Structure Type II

In practice, a second type of SIS flexure structure (SIS-II) 
has also been proposed [20, 34], and the fundamental struc-
ture can be schematically illustrated in Fig. 8a. The planar 
compliance of SIS-II with elliptical hinge profiles has been 
systematically investigated in our previous work [23]. Unlike 
SIS-I, in SIS-II, the central link is connected to two arms 
and then to the fixed boundary through four identical flexure 
hinges. As two flexure hinges are used in each arm, the stiff-
ness can be maintained at a reasonable level. However, the 
relatively large size may affect the structural compactness.

As illustrated in Fig. 8a, a coordinate is located at the 
center point of the central link. Same as Fig. 3a, external 
loads are applied at point O. The additional geometric 
parameters of SIS-II are also illustrated in Fig. 8a, i.e., the 
arm length l1 and central link length 2l2 . The loads and reac-
tions in the x–y and x–z planes are presented in Fig. 8b, c, 
respectively. The same method in Sect. 3 is utilized to solve 
the statically indeterminate problem and obtain the resultant 
deflections of SIS-II. The process is straightforward and thus 
omitted for the conciseness of this paper. The deflections of 
SIS-II are given below:

(25)uO = FxP1

where b3 = 4RP1 + (2l0 + l1)
2P2 + 4P3.

where b4 =
[
Ωd2 + 3

(
2l0 + l1

)2]
P1 + d2P4.

Same as SIS-I, the couplings between the linear and 
angular motions are eliminated. Hence, SIS-II can also be 
utilized as a prismatic or revolute joint according to the load 
status. Similar to Fig. 5, multiple SIS-II-based structures can 
also be arranged using the same configurations, such as the 
examples presented in [23]. The corresponding linear and 
angular stiffness can be obtained following the same method 
in Eqs. (17)–(20). The process is straightforward and will 
not be shown herein.

5  Case Studies

5.1  SIS‑Based Revolute Joints

Although SIS flexure structures are frequently utilized as 
prismatic joints in flexure-based mechanism designs, they 
can also be utilized as revolute joints, as evident from 
Sects. 3 and 4. To verify this, a flexure-based lever mecha-
nism is adopted as an example to investigate the character-
istics of SIS-based revolute joints.

The schematic diagram of a lever mechanism is shown 
in Fig.  9, where point O is the rotation center of the 
lever, point A is the input point, and point B is the output 
point. Figure 9a, b illustrate two common revolute joints 
(dashed-outlined part). In Fig. 9a, a single flexure hinge 
is arranged orthogonal to the actuation direction [35], and 
in Fig. 9b, a single flexure hinge is arranged parallel to 
the actuation direction [3]. For the two revolute joints, the 
angular stiffness is the same, whereas the orientation of 
the flexure hinge is different. For comparison, two SIS-
based revolute joints are also illustrated in Fig. 9c, d. As 
outlined in Sects. 3 and 4, the angular stiffness is increased 
in both SIS-based revolute joints, and SIS-I in Fig. 9c has 
the highest angular stiffness. In Fig. 9b–d, only the cor-
responding revolute joint is depicted, as the other parts 
of the lever mechanism remain unchanged. Therefore, the 
characteristics of SIS-based revolute joints can be inves-
tigated by comparing the performances of the revolute 
joints.

The lever mechanism is assumed to be a monolithic struc-
ture with an out-of-plane depth of d = 10 mm. For simplicity 

(26)
[
vO
�zO

]
=

[
b3∕4 0

0
P2

b3+(4l0+l1+2l2)
2P2

][
Fy

Mz
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,

(27)
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,

Fig. 8  SIS flexure structure type II (SIS-II): a schematic diagram, b 
loads and reactions in the x–y plane, and c loads and reactions in the 
x–z plane



 Nanomanufacturing and Metrology             (2023) 6:1 

1 3

    1  Page 10 of 14

and without loss of generality, the other geometric param-
eters of the lever mechanism are manually assigned. All the 
right circular flexure hinges are assumed to be identical with 
R = 6 mm and � = 0.1 . The other geometric parameters are 
defined in Fig. 9. Their values are manually assigned as fol-
lows: h1 = 30 mm, h2 = 40 mm, h3 = 30 mm, d1 = 40 mm, 
and d2 = 160 mm. Thus, the lever mechanism has a theoreti-
cal displacement amplification ratio (DAR) of 4. The mate-
rial is assumed to be the same aluminum alloy as presented 
in Sect. 3.3. For the static characteristics, a displacement 
input of 1 μ m is applied to drive point A, and the following 
parameters are derived: DAR, input stiffness, and maximum 
stress. For the dynamic characteristics, modal analyses are 
performed, and the first natural frequencies are recorded. 
As this section focuses on the lever mechanism’s in-plane 
behavior, the out-of-plane modes are neglected. The compu-
tational analyses are carried out, and the results are provided 
in Table 2.

The DAR is an important index of the lever mechanism. 
Due to the slight drift of the rotation center and lever com-
pliance, the theoretical DAR is difficult to reach. The com-
putational results show that the DAR is the lowest for SIS-I, 
whereas the DARs of the other revolute joints are very close 
to each other.

For the revolute joints in Fig. 9a, b, the orientation differ-
ence affects the performances. Figure 9a achieves a higher 
input stiffness, higher maximum stress, and higher resonant 
frequency. For the SIS-based revolute joints in Fig. 9c and 
d, because the angular stiffness is higher than a single flex-
ure hinge, the input stiffness, maximum stress, and resonant 
frequency can be increased, especially for SIS-I. Compared 

with SIS-II, the very high angular stiffness of SIS-I leads 
to the highest resonant frequency and most severe stress 
concentration. This condition makes SIS-I appropriate in 
high-frequency applications, while the motion range will be 
limited due to the severe stress concentration.

5.2  SIS‑Based Prismatic Joints

Prismatic joints are important components in micro/nanoma-
nipulation mechanisms. Several statically indeterminate 
prismatic joints are presented in Fig. 10. Hinge and leaf par-
allelograms are presented in Fig. 10a, b. They are common 
prismatic joints and are statically indeterminate to the first 
degree. SIS-II with a right circular profile and SIS-I with a 
leaf-type profile are presented in Fig. 10c, d.

The geometric parameters are listed in Table 3, and com-
putational analyses are carried out to investigate the perfor-
mances of the prismatic joints. The material is assumed to be 
the same aluminum alloy as presented in Sect. 3.3. During 
the computational analyses, a displacement input of 100 μ m 
is applied. The parasitic motions, in-plane and out-of-plane 
stiffness, and first natural frequency are investigated. The 
results are shown in Table 4.

As shown in Table 4, for the hinge parallelogram and 
leaf parallelogram, the parasitic translations are at the 
level of 0.1% with respect to the primary motion, and 
the parasitic rotations are on the order of microradi-
ans. For 1-DOF applications, these parasitic motions 
will be impossible to compensate for and will affect the 
motion accuracy. On the contrary, parasitic motions can 
be attenuated over 1000 times in SIS-based prismatic 
joints. Small-magnitude parasitic motions are negligible. 

Fig. 9  Lever mechanism with different revolute joints: a single flex-
ure hinge orthogonal to actuation, b single flexure hinge parallel to 
actuation, c SIS-I, and d SIS-II

Table 2  Performances of the revolute joints

(a) (b) (c) (d)

DAR 3.963 3.988 3.742 3.981
Input stiffness (N/μm) 0.0843 0.0618 5.241 0.158
Maximum stress (MPa) 0.476 0.349 2.267 0.621
Resonant frequency (Hz) 30.44 24.14 263.4 44.39

Fig. 10  Flexure-based prismatic joints: a right circular hinge paral-
lelogram, b leaf parallelogram, c SIS-II with a right circular profile, 
and d SIS-I with a leaf-type profile

Table 3  Geometric parameters of the prismatic joints

R (mm) t (mm) d (mm) L1 (mm) L2 (mm) L3 (mm)

5 0.25 100 50 15 20
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The in-plane stiffness of SIS-II and SIS-I are approxi-
mately twice those of the parallelograms in Fig. 10a, b, 
respectively. However, the out-of-plane stiffness has been 
increased by approximately ten times. This condition can 
help improve the stability and load capacity. SIS-based 
prismatic joints show slight improvements from their 
parallelogram-based counterparts in terms of the first 
natural frequency.

6  Experimental Studies

To validate the proposed compliance models, a series of 
SIS-I flexure hinge prototypes are manufactured, and the 
linear stiffness along the y-axis is measured. For simplicity, 
circular flexure hinges are adopted, and the design spaces 
are defined as � = 0.03–0.05, l0∕R = 0.5–1, and R is fixed 
to 10 mm.

These hinges are made of 6061 aluminum alloy and are 
manufactured via wire electrical discharge machining. The 
diameter of the cutting wire is 0.2 mm, and the cutting speed 
is 10 mm/min. The manufacturing tolerance of the hinges 
is approximately 0.02 mm. The experiment setup is shown 
in Fig. 11. This experiment is carried out on a manual ten-
sion-compression testing machine (HLD, HANDPI, China). 
The SIS prototypes are clamped on the clip of the testing 
machine. A hook is attached to the flexure hinge and is con-
nected to a force gauge (SN-100N, HANDPI, China). The 
force gauge is fixed on the moving platform of the tension-
compression testing machine. The displacement of the flex-
ure hinge is sensed by an eddy current displacement sensor 
(ML33-2 mm-00-08, MIRAN, China). Nine SIS-I prototypes 
are manufactured and tested. The geometric parameters of 
the hinges are listed in Table 5.

During the experiments, each hinge is first clamped along 
the y-axis and then pulled by the force gauge. A force-displace-
ment data pair is recorded when the sensors’ readings are sta-
ble. Several data pairs are collected for each hinge, and linear 
regression is used to derive the displacement-force relationship 
of each hinge. The stiffness is the slope of the force-displace-
ment relationship. The experiment data are given in the Supple-
mentary material. The analytical stiffness is given in Eq. (17).

The modeling errors are listed in Table 5. The modeling 
error is between − 8.64% and 12.94%. Similar to the simula-
tion results of the right circular hinges, the influence of the 
non-dimensional geometric parameter � is obvious. Besides 
the model itself, the manufacturing and assembling errors 
also contribute to the overall error, and the accuracy of the 
model is considered acceptable.

Table 4  Summary of the 
computational results

Hinge SIS-II Leaf SIS-I

Parasitic translation in x-axis (nm) − 91.63 − 0.0085 − 111.31 − 0.0097
Parasitic rotation about z-axis ( μrad) 4.26 0.0041 1.57 0.00033
In-plane stiffness (N/μm) 0.0576 0.116 0.0114 0.0231
Out-of-plane stiffness (N/μm) 0.38 3.49 0.12 1.62
First natural frequency (Hz) 250.86 251.28 129.72 129.85

Table 5  Geometric parameters 
and modeling error for each 
hinge

1 2 3 4 5 6 7 8 9

� (–) 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05
l0∕R (–) 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1
Analytical stiffness (N/μm) 4.78 4.42 4.34 7.59 6.80 6.64 10.9 9.51 9.21
Measured stiffness (N/μm) 4.27 4.80 4.23 7.27 6.55 6.03 9.50 8.64 8.52
Error (%) 10.6 − 8.64 2.63 4.14 3.70 9.15 12.94 9.18 7.51

Eddy current 
displacement sensor

Force gauge

Flexure hinge

Clip

Front end circuit

Manual tension compression 
testing machine

Hook

Fig. 11  Experimental setup for stiffness testing
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The analysis of variance results is given in Table  6. 
The SS, df, and MS columns represent the residual sum of 
square, DOFs, and mean sum of the square residual of each 
factor, respectively, and the F and P columns are the F sta-
tistics and probability of the F-test of each factor, respec-
tively. In the table, the P values of parameters � and R∕l0 are 
greater than 0.05, which means random factors, such as the 
manufacturing and assembling errors, are important sources 
of the discrepancy between the analytical and experimen-
tal results. Nevertheless, the geometrical parameter � has a 
smaller P value than R∕l0 , which indicates that it has a more 
significant influence on the modeling error than R∕l0.

7  Conclusions

This paper systematically describes the characteristics of a 
class of SIS flexure structures. Two fundamental types of SIS 
flexure structures, namely, SIS-I and SIS-II, are proposed and 
investigated. Unified analytical compliance models for the SIS 
flexure structures are established and verified through com-
putational analyses and experiments. Because the established 
models are unified, the fundamental integrations of some 
common hinge profiles are provided in the Supplementary 
material. Therefore, the compliance models established in this 
paper are readily applicable to a wide range of applications.

Due to the static indeterminacy and topological sym-
metry, SIS flexure structures feature decoupled linear and 
angular motions, improved motion accuracy, high stiffness 
in the in-plane and out-of-plane directions, and high sta-
bility. These characteristics make SIS flexure structures 
attractive in ultra-precision positioning and manipulation 
tasks. In practice, SIS flexure structures are frequently uti-
lized as prismatic joints. However, this paper reveals that 
they can also be utilized as revolute joints. According to 
the expected functionality in transmitting linear or angular 
motions, multiple SIS-based structures can be combined in 
various configurations for outstanding performance. The 
corresponding compliance models for these SIS-based struc-
tures are also established in this study. In future work, the 
nonlinear behavior of SIS flexure structures will be further 
investigated. In addition, the integration and application of 

SIS flexure structures in micro/nanomanipulators will be 
investigated.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41871- 023- 00181-x.
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