Skip to main content

Advertisement

Log in

Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

A thermal/optical carbon analyzer (TOA) was adapted to direct thermally-evolved gases to an electron ionization quadrupole mass spectrometer (QMS), creating a TOA-QMS. While this approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), and can quantify sulfate (SO42−), nitrate (NO3), ammonium (NH4+), and organic carbon (OC) fractions from ambient particle laden quartz-fiber filters, there remains a need to further understand the composition of the organic aerosol fraction. Elemental analysis (EA) of standard organic mixtures and ambient samples demonstrates the feasibility of the TOA-QMS for measuring the ratios of oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), sulfur-to-carbon (S/C), and organic matter-to-organic carbon (OM/OC). For ambient samples from Central California, the TOA-QMS returned average ratios for O/C of 1.03 ± 0.27 and H/C of 1.95 ± 0.69, respectively. Higher H/C ratios were observed during clean air episodes, while lower ratios were observed during hazy conditions. A relatively constant level of aerosol oxidation was observed throughout the study. The average OM/OC multiplier was 2.55 ± 0.4, which is higher than the conventionally used values of 1.4 and 1.8, indicating higher contributions from biomass burning and aged aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiken AC, DeCarlo PF, Jimenez JL (2007) Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal Chem 79:8350–8358

    Article  Google Scholar 

  • Aiken AC et al (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485

    Article  Google Scholar 

  • Altieri KE, Turpin BJ, Seitzinger SP (2009) Composition of dissolved organic nitrogen in continental precipitation investigated by ultra-high resolution FT-ICR mass spectrometry. Environ Sci Technol 43:6950–6955

    Article  Google Scholar 

  • Bateman AP, Nizkorodov SA, Laskin J, Laskin A (2009) Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Phys Chem Chem Phys 11:7931–7942

    Article  Google Scholar 

  • Chen L-WA, Watson JG, Chow JC, Magliano KL (2007) Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 41:2818–2826

    Article  Google Scholar 

  • Chen L-WA et al (2015) Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos Meas Tech 8:451–461

    Article  Google Scholar 

  • Chow JC, Watson JG, Chen L-WA, Chang M-CO, Robinson NF, Trimble DL, Kohl SD (2007a) The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manage Assoc 57:1014–1023

    Article  Google Scholar 

  • Chow JC, Watson JG, Lowenthal DH, Chen L-WA, Zielinska B, Mazzoleni LR, Magliano KL (2007b) Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos Chem Phys 7:1741–1754

    Article  Google Scholar 

  • Chow JC, Lowenthal DH, Chen L-WA, Wang XL, Watson JG (2015a) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8:243–263

    Article  Google Scholar 

  • Chow JC et al (2015b) Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual Res 15:1145–1159. https://doi.org/10.4209/aaqr.2015.02.0106

    Article  Google Scholar 

  • Frank NH (2006) Retained nitrate, hydrated sulfates, and carbonaceous mass in Federal reference method fine particulate matter for six eastern cities. J Air Waste Manage Assoc 56:500–511

    Article  Google Scholar 

  • Fuzzi S, Decesari S, Facchini MC, Matta E, Mircea M, Tagliavini E (2001) A simplified model of the water soluble organic component of atmospheric aerosols. Geophys Res Lett 28:4079–4082. https://doi.org/10.1029/2001GL013418

    Article  Google Scholar 

  • Gilardoni S et al (2009) Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmos Chem Phys 9:5417–5432

    Article  Google Scholar 

  • Kiss G, Varga B, Galambos I, Ganszky I (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J Geophys Res 107:ICC 1-1–ICC 1-8. https://doi.org/10.1029/2001jd000603

    Article  Google Scholar 

  • Krivácsy Z et al (2001) Study of the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J Atmos Chem 39:235–259

    Article  Google Scholar 

  • Kroll JH et al (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139

    Article  Google Scholar 

  • Lopez-Hilfiker FD et al (2014) A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos Meas Tech 7:983–1001

    Article  Google Scholar 

  • Mazzoleni LR, Ehrmann BM, Shen XH, Marshall AG, Collett JL Jr (2010) Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 44:3690–3697

    Article  Google Scholar 

  • McLafferty FW, Turecek F (1993) Interpretation of mass spectra, 2nd edn. University Science Books, Mill Valley

    Google Scholar 

  • Mysak ER, Smith JD, Ashby PD, Newberg JT, Wilson KR, Bluhm H (2011) Competitive reaction pathways for functionalization and volatilization in the heterogeneous oxidation of coronene thin films by hydroxyl radicals and ozone. Phys Chem Chem Phys 13:7554–7564. https://doi.org/10.1039/C0CP02323J

    Article  Google Scholar 

  • Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  Google Scholar 

  • O’Brien RJ, Crabtree JH, Holmes JR, Hoggan MC, Bockian AH (1975) Formation of photochemical aerosol from hydrocarbons. Atmos Anal Environ Sci Technol 9:577–582

    Article  Google Scholar 

  • Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Technical note: in-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos Chem Phys 11:8977–8993

    Article  Google Scholar 

  • Pang Y, Turpin BJ, Gundel LA (2006) On the importance of organic oxygen for understanding organic aerosol particles. Aerosol Sci Technol 40:128–133

    Article  Google Scholar 

  • Riemann B (1868) Über der Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13:87–132

    Google Scholar 

  • Riggio GM (2015) Development and application of thermal/optical- quadrupole TOA-QMS mass spectrometry for quantitative analysis of major particulate matter constituents, M.S. Thesis. University of Nevada, Reno, Nevada, USA

  • Riggio GM, Chow JC, Cropper PM, Wang XL, Yatavelli RLN, Yang XF, Watson JG (2018) Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation. J Air Waste Manage Assoc 68:463–476

    Article  Google Scholar 

  • Robinson AL, Grieshop AP, Donahue NM, Hunt SW (2010) Updating the conceptual model for fine particle mass emissions from combustion systems. J Air Waste Manage Assoc 60:1204–1222

    Article  Google Scholar 

  • Strader R, Lurmann FW, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33:4849–4863

    Article  Google Scholar 

  • Timko MT et al (2009) Sampling artifacts from conductive silicone tubing. Aerosol Sci Technol 43:855–865

    Article  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    Article  Google Scholar 

  • Watson JG, Chow JC, Bowen JL, Lowenthal DH, Hering SV, Ouchida P, Oslund W (2000) Air quality measurements from the Fresno Supersite. J Air Waste Manage Assoc 50:1321–1334

    Article  Google Scholar 

  • Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2006) An in situ instrument for speciated organic composition of atmospheric aerosols: thermal desorption aerosol GC/MS-FID (TAG). Aerosol Sci Technol 40:627–638

    Article  Google Scholar 

  • Williams BJ et al (2014) The first combined thermal desorption aerosol gas chromatograph-aerosol mass spectrometer (TAG-AMS). Aerosol Sci Technol 48:358–370

    Article  Google Scholar 

  • Yatavelli RLN, Thornton JA (2010) Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci Technol 44:61–74

    Article  Google Scholar 

  • Young DE et al (2016) Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California Atmos. Chem Phys 16:5427–5451. https://doi.org/10.5194/acp-16-5427-2016

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by National Science Foundation Grant no. CHE 1464501 and the National Park Service IMPROVE Carbon Analysis Contract P16PC00229. Dr. Glenn Miller of the University of Nevada, Reno provided useful suggestions for the experiments and their description.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. Chow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, J.C., Riggio, G.M., Wang, X. et al. Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses. Aerosol Sci Eng 2, 165–172 (2018). https://doi.org/10.1007/s41810-018-0033-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-018-0033-5

Keywords

Navigation