Skip to main content

Advertisement

Log in

A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods

  • Research Article
  • Published:
Journal of Healthcare Informatics Research Aims and scope Submit manuscript

Abstract

Ocular imaging instruments, such as Confocal Scanning Laser Ophthalmoscopy (CSLO), captures high-quality images of the optic disc (also known as optic nerve head) that help clinicians to diagnose glaucoma. We present an integrated data analytics framework to aid clinicians in interpreting CSLO optic nerve images to diagnose and monitor the progression of glaucoma. To distinguish between healthy and glaucomatous optic discs, our framework derives shape information from CSLO images using image processing (Zernike moment method), selects salient features (hybrid feature selection), and then trains image classifiers (Multilayer Perceptron, Support Vector Machine, Bayesian Network). To monitor glaucoma progression over time, our framework uses a mathematical model of the optic disc to extract morphological features from CSLO images and applies clustering (Self-Organizing Maps) to visualize subtypes of glaucomatous optic disc damage. We contend that our data analytics framework offers an automated and objective analysis of optic nerve images that can potentially support both diagnosis and monitoring of glaucoma. We validated our framework with CSLO optic nerve images and our data analytics approach detected glaucomatous optic discs with a sensitivity of 0.86, a specificity of 0.80, an accuracy of 0.838, and an AUROC of 0.913 with a Bayesian network classifier using the optimal subset of Zernike features (six moments). Furthermore, our framework identified, using morphological features, five clusters of CSLO images, where each cluster stands for a subtype of optic nerve damage (two healthy subtypes and three glaucoma subtypes). The characteristics of each cluster—the subtype of the image—were determined by experts who examined the morphology of the images within each cluster and provided subtype characteristics to each cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stamper RL, Lieberman MF, Drake MV (2009) Primary open angle glaucoma. In: Stamper RL, Lieberman MF, Drake MV (eds) Becker-Shaffer’s diagnosis and therapy of the glaucomas, 8th edn. Mosby/Elsevier, Edinburg, pp 239–265. https://doi.org/10.1016/B978-0-323-02394-8.00017-6

    Chapter  Google Scholar 

  2. Dielemans I, de Jong PTVM, Stolk R, Vingerling JR, Grobbee DE, Hofman A (1996) Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. Ophthalmology 103:1271–1275. https://doi.org/10.1016/S0161-6420(96)30511-3

    Article  Google Scholar 

  3. Brandt JD (2004) Corneal thickness in glaucoma screening, diagnosis, and management. Curr Opin Ophthalmol 15:85–89

    Article  Google Scholar 

  4. Prum BE, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, Herndon LW, Lim MC, Williams RD (2016) Primary Open-Angle Glaucoma Preferred Practice Pattern® guidelines. Ophthalmology 123:P41–P111. https://doi.org/10.1016/j.ophtha.2015.10.053

    Article  Google Scholar 

  5. Jampel HD, Friedman D, Quigley H, Vitale S, Miller R, Knezevich F, Ding Y (2009) Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol 147:39–44.e1. https://doi.org/10.1016/j.ajo.2008.07.023

    Article  Google Scholar 

  6. Azuara-Blanco A, Katz LJ, Spaeth GL, Vernon SA, Spencer F, Lanzl IM (2003) Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs. Am J Ophthalmol 135:949–950. https://doi.org/10.1016/S0002-9394(03)00480-X

    Article  Google Scholar 

  7. Coops A, Henson DB, Kwartz AJ, Artes PH (2006) Automated analysis of Heidelberg retina tomograph optic disc images by glaucoma probability score. Investig. Opthalmology Vis. Sci. 47:5348. https://doi.org/10.1167/iovs.06-0579

    Article  Google Scholar 

  8. Kotowski J, Wollstein G, Ishikawa H, Schuman JS (2014) Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 59:458–467. https://doi.org/10.1016/j.survophthal.2013.04.007

    Article  Google Scholar 

  9. Mistlberger A, Liebmann JM, Greenfield DS, Pons ME, Hoh S-T, Ishikawa H, Ritch R (1999) Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive. and glaucomatous eyes Ophthalmology 106:2027–2032. https://doi.org/10.1016/S0161-6420(99)90419-0

    Article  Google Scholar 

  10. Zinser G, Wijnaendts-van-Resandt RV, Dreher AW, Weinreb RN, Harbarth U, Schroder H, Burk RO (1989) Confocal laser tomographic scanning of the eye. In: Wampler JE (ed) Proc. SPIE 1161, New Methods in Microscopy and Low Light Imaging, San Diego, August 7. International Society for Optics and Photonics, Bellingham, pp 337–344

    Google Scholar 

  11. Wollstein G, Garway-Heath DF, Hitchings RA (1998) Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105:1557–1563. https://doi.org/10.1016/S0161-6420(98)98047-2

    Article  Google Scholar 

  12. Swindale NV, Stjepanovic G, Chin A, Mikelberg FS (2000) Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 41:1730–1742

    Google Scholar 

  13. Miglior S, Guareschi M, Albe’ E, Gomarasca S, Vavassori M, Orzalesi N (2003) Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol 136:26–33. https://doi.org/10.1016/S0002-9394(03)00084-9

    Article  Google Scholar 

  14. Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA (2000) Identifying early glaucomatous changes: comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 107:2272–2277. https://doi.org/10.1016/S0161-6420(00)00363-8

    Article  Google Scholar 

  15. Strouthidis NG, Garway-Heath DF (2008) New developments in Heidelberg retina tomograph for glaucoma. Curr Opin Ophthalmol 19:141–148. https://doi.org/10.1097/ICU.0b013e3282f4450b

    Article  Google Scholar 

  16. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  17. Strouthidis NG, Demirel S, Asaoka R, Cossio-Zuniga C, Garway-Heath DF (2010) The Heidelberg retina tomograph glaucoma probability score: reproducibility and measurement of progression. Ophthalmology 117:724–729. https://doi.org/10.1016/j.ophtha.2009.09.036

    Article  Google Scholar 

  18. Iester M, Oddone F, Prato M, Centofanti M, Fogagnolo P, Rossetti L, Vaccarezza V, Manni G, Ferreras A (2013) Linear discriminant functions to improve the glaucoma probability score analysis to detect glaucomatous optic nerve heads. J Glaucoma 22:73–79. https://doi.org/10.1097/IJG.0b013e31823298b3

    Article  Google Scholar 

  19. Banister K, Boachie C, Bourne R, Cook J, Burr JM, Ramsay C, Garway-Heath D, Gray J, McMeekin P, Hernández R, Azuara-Blanco A (2016) Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection? Ophthalmology 123:930–938. https://doi.org/10.1016/j.ophtha.2016.01.041

    Article  Google Scholar 

  20. Zhu H, Poostchi A, Vernon SA, Crabb DP (2014) Detecting abnormality in optic nerve head images using a feature extraction analysis. Biomed Opt Express 5:2215–2230. https://doi.org/10.1364/BOE.5.002215

    Article  Google Scholar 

  21. Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee T-W, Sejnowski TJ, Weinreb RN (2002) Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 43:3444–3454

    Google Scholar 

  22. Park J-M, Reed J, Zhou Q (2002) Active feature selection in optic nerve data using support vector machine. In: Fogel DB (ed) Proc. of the 2002 International Joint Conference on Neural Networks (IJCNN’02), May 12-17, Honolulu, Hawaii. IEEE, Piscataway, pp 1178–1182

    Google Scholar 

  23. Belghith A, Balasubramanian M, Bowd C, Weinreb RN, Zangwill LM (2014) A unified framework for glaucoma progression detection using Heidelberg retina tomograph images. Comput Med Imaging Graph 38:411–420. https://doi.org/10.1016/j.compmedimag.2014.03.002

    Article  Google Scholar 

  24. Mardin CY, Hothorn T, Peters A, Jünemann AG, Nguyen NX, Lausen B (2003) New glaucoma classification method based on standard Heidelberg retina tomograph parameters by bagging classification trees. J Glaucoma 12:340–346

    Article  Google Scholar 

  25. Bowd C, Lee I, Goldbaum MH, Balasubramanian M, Medeiros FA, Zangwill LM, Girkin CA, Liebmann JM, Weinreb RN (2012) Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements. Investig Opthalmol Vis Sci 53:2382–2389. https://doi.org/10.1167/iovs.11-7951

    Article  Google Scholar 

  26. Racette L, Chiou CY, Hao J, Bowd C, Goldbaum MH, Zangwill LM, Lee T-W, Weinreb RN, Sample PA (2010) Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers. J Glaucoma 19:167–175. https://doi.org/10.1097/IJG.0b013e3181a98b85

    Article  Google Scholar 

  27. Horn FK, Lämmer R, Mardin CY, Jünemann AG, Michelson G, Lausen B, Adler W (2012) Combined evaluation of frequency doubling technology perimetry and scanning laser ophthalmoscopy for glaucoma detection using automated classification. J Glaucoma 21:27–34. https://doi.org/10.1097/IJG.0b013e3182027766

    Article  Google Scholar 

  28. Twa MD, Parthasarathy S, Johnson CA, Bullimore MA (2012) Morphometric analysis and classification of glaucomatous optic neuropathy using radial polynomials. J Glaucoma 21:302–312. https://doi.org/10.1097/IJG.0b013e31820d7e6a

    Article  Google Scholar 

  29. Broadway DC, Nicolela MT, Drance SM (2003) Optic disc morphology on presentation of chronic glaucoma. Eye 17:798. https://doi.org/10.1038/sj.eye.6700478 author reply 799

    Article  Google Scholar 

  30. Abidi SSR, Artes PH, Yan S, Yu J (2007) Automated interpretation of optic nerve images: a data mining framework for glaucoma diagnostic support. In: Kuhn KA, Warren JR, Leong T-Y (eds) MEDINFO 2007: building sustainable health systems. IOS Press, Amsterdam, pp 1309–1313

    Google Scholar 

  31. Liao SX, Pawlak M (1998) On the accuracy of Zernike moments for image analysis. IEEE Trans Pattern Anal Mach Intell 20:1358–1364. https://doi.org/10.1109/34.735809

    Article  Google Scholar 

  32. Ming-Kuei H (1962) Visual pattern recognition by moment invariants. IEEE Trans Inf Theory 8:179–187. https://doi.org/10.1109/TIT.1962.1057692

    Article  MATH  Google Scholar 

  33. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70:920–930. https://doi.org/10.1364/JOSA.70.000920

    Article  MathSciNet  Google Scholar 

  34. Hosny KM (2010) A systematic method for efficient computation of full and subsets Zernike moments. Inf. Sci. (Ny). 180:2299–2313. https://doi.org/10.1016/j.ins.2010.02.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Papakostas GA, Boutalis YS, Karras DA, Mertzios BG (2007) A new class of Zernike moments for computer vision applications. Inf Sci (NY) 177:2802–2819. https://doi.org/10.1016/j.ins.2007.01.010

    Article  MathSciNet  MATH  Google Scholar 

  36. Teh C-H, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 10:496–513. https://doi.org/10.1109/34.3913

    Article  MATH  Google Scholar 

  37. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497. https://doi.org/10.1109/34.55109

    Article  Google Scholar 

  38. Li S, Lee M-C, Pun C-M (2009) Complex Zernike moments features for shape-based image retrieval. IEEE Trans Syst Man, Cybern - Part A Syst Humans 39:227–237. https://doi.org/10.1109/TSMCA.2008.2007988

    Article  Google Scholar 

  39. Singh C, Mittal N, Walia E (2011) Face recognition using Zernike and complex Zernike moment features. Pattern Recognit Image Anal 21:71–81. https://doi.org/10.1134/S1054661811010044

    Article  Google Scholar 

  40. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  41. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  42. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  Google Scholar 

  43. Whitney AW (1971) A direct method of nonparametric measurement selection. IEEE Trans Comput C-20:1100–1103. https://doi.org/10.1109/T-C.1971.223410

    Article  MATH  Google Scholar 

  44. Marill T, Green D (1963) On the effectiveness of receptors in recognition systems. IEEE Trans Inf Theory 9:11–17. https://doi.org/10.1109/TIT.1963.1057810

    Article  Google Scholar 

  45. Tsai C-F, Eberle W, Chu C-Y (2013) Genetic algorithms in feature and instance selection. Knowledge-Based Syst 39:240–247. https://doi.org/10.1016/j.knosys.2012.11.005

    Article  Google Scholar 

  46. Lin S-W, Ying K-C, Chen S-C, Lee Z-J (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35:1817–1824. https://doi.org/10.1016/j.eswa.2007.08.088

    Article  Google Scholar 

  47. Hruschka ER, Hruschka ER, Ebecken NFF (2004) Feature selection by Bayesian Networks. In: Tawfik AY, Goodwin SD (eds) Advances in Artificial Intelligence: 17th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2004, London, Ontario, Canada, May 17–19, 2004. Proceedings. Springer, Berlin, pp 370–379

    Chapter  Google Scholar 

  48. Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347. https://doi.org/10.1007/BF00994110

    Article  MATH  Google Scholar 

  49. Koller D, Sahami M (1996) Toward optimal feature selection. In: Saitta L (ed) Proceedings of the Thirteenth International Conference on Machine Learning (ICML), Bari, Italy, July 3–6, 1996. Morgan Kaufmann, San Mateo, pp 284–292

    Google Scholar 

  50. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, Burlington

    MATH  Google Scholar 

  51. Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480. https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  52. Lötsch J, Ultsch A (2014) Exploiting the structures of the U-matrix. In: Villmann T, Schleif F-M, Kaden M, Lange M (eds) Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 10th International Workshop, WSOM 2014, Mittweida, Germany, July, 2–4, 2014. Springer, Cham, pp 249–257

    Chapter  Google Scholar 

  53. Kohonen T (2013) Essentials of the self-organizing map. Neural Netw 37:52–65. https://doi.org/10.1016/j.neunet.2012.09.018

    Article  Google Scholar 

  54. Ultsch A, Siemon HP (1990) Kohonen’s self organizing feature maps for exploratory data analysis. In: Widrow B, Angeniol B (eds) Proceedings of the International Neural Network Conference (INNC-90), July 9–13, 1990, Paris, France. Kluwer Academic Publishers, Dordrecht, pp 305–308

    Google Scholar 

  55. Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Netw 11:586–600. https://doi.org/10.1109/72.846731

    Article  Google Scholar 

  56. Figueiredo MATAT, Jain AKK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24:381–396. https://doi.org/10.1109/34.990138

    Article  Google Scholar 

  57. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MathSciNet  MATH  Google Scholar 

  58. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464. https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  59. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  60. Yu J, Abidi SSR, Artes PH (2005) A hybrid feature selection strategy for image defining features: towards interpretation of optic nerve images. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics: August 18–21, 2005, Ramada Hotel, Guangzhou, China. pp. 5127–5132. IEEE, Los Alamitos, CA, USA

  61. Yan S, Abidi SSR, Artes PH (2005) Analyzing sub-classifications of glaucoma via SOM based clustering of optic nerve images. In: Engelbrecht R, Geissbuhler A, Lovis C, Mihalas G (eds) Connecting Medical Informatics and Bio-Informatics: Proceedings of MIE2005 The 19th International Congress of the European Federation for Medical Informatics (MIE2005), Geneva, August 28–September 1, 2005. IOS Press, Amsterdam, pp 483–488

    Google Scholar 

  62. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324. https://doi.org/10.1016/S0004-3702(97)00043-X

    Article  MATH  Google Scholar 

  63. Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput Stand Interfaces 16:265–278. https://doi.org/10.1016/0920-5489(94)90017-5

    Article  Google Scholar 

  64. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  65. Thomas P, Suhner M-C (2015) A new multilayer perceptron pruning algorithm for classification and regression applications. Neural Process Lett 42:437–458. https://doi.org/10.1007/s11063-014-9366-5

    Article  Google Scholar 

  66. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  67. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  68. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ (2010) Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 10:16. https://doi.org/10.1186/1472-6947-10-16

    Article  Google Scholar 

  69. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory-COLT ‘92, Pittsburgh, Pennsylvania, USA—July 27–29, 1992. pp. 144–152. ACM Press, New York, New York, USA

  70. Bowd C, Zangwill LM, Medeiros FA, Hao J, Chan K, Lee T-W, Sejnowski TJ, Goldbaum MH, Sample PA, Crowston JG, Weinreb RN (2004) Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Investig. Opthalmology Vis. Sci. 45:2255. https://doi.org/10.1167/iovs.03-1087

    Article  Google Scholar 

  71. Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G (2010) Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal 14:471–481. https://doi.org/10.1016/j.media.2009.12.006

    Article  Google Scholar 

  72. Acharya UR, Dua S, Du X, Sree SV, Chua CK (2011) Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed 15:449–455. https://doi.org/10.1109/TITB.2011.2119322

    Article  Google Scholar 

  73. Goldbaum MH, Sample PA, Chan K, Williams J, Lee T-W, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, Weinreb RN (2002) Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 43:162–169

    Google Scholar 

  74. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    MathSciNet  MATH  Google Scholar 

  75. Garcia S, Luengo J, Sáez JA, López V, Herrera F (2013) A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 25:734–750. https://doi.org/10.1109/TKDE.2012.35

    Article  Google Scholar 

  76. Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. of the 13th International Joint Conference on Artificial Intelligence—volume 2, Chambery, France, August 28-September 3, 1993. pp. 1022–1027. Morgan Kaufmann Publishers, San Mateo, CA

  77. Nicolela MT, Drance SM (1996) Various glaucomatous optic nerve appearances. Ophthalmology 103:640–649. https://doi.org/10.1016/S0161-6420(96)30640-4

    Article  Google Scholar 

  78. Hammel N, Belghith A, Bowd C, Medeiros FA, Sharpsten L, Mendoza N, Tatham AJ, Khachatryan N, Liebmann JM, Girkin CA, Weinreb RN, Zangwill LM (2016) Rate and pattern of rim area loss in healthy and progressing glaucoma eyes. Ophthalmology 123:760–770. https://doi.org/10.1016/j.ophtha.2015.11.018

    Article  Google Scholar 

  79. Nicolela MT, Drance SM, Broadway DC, Chauhan BC, McCormick TA, LeBlanc RP (2001) Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol 132:836–844. https://doi.org/10.1016/S0002-9394(01)01254-5

    Article  Google Scholar 

  80. Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2:165–193. https://doi.org/10.1007/s40745-015-0040-1

    Article  Google Scholar 

  81. Sarlin P, Eklund T (2013) Financial performance analysis of European banks using a fuzzified Self-Organizing Map. Int J Knowledge-based Intell Eng Syst 17:223–234. https://doi.org/10.3233/KES-130261

    Article  Google Scholar 

  82. Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111. https://doi.org/10.2307/271063

    Article  Google Scholar 

  83. Lausen B, Adler W, Peters A (2008) Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data. Methods Inf Med 47:38–46. https://doi.org/10.3414/ME0348

    Article  Google Scholar 

  84. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26. https://doi.org/10.1016/J.NEUCOM.2016.12.038

    Article  Google Scholar 

  85. Cerentini A, Welfer D, Cordeiro d’Ornellas M, Pereira Haygert CJ, Dotto GN (2017) Automatic identification of glaucoma using deep learning methods. Stud Health Technol Inform 245:318–321

    Google Scholar 

  86. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci (Ny) 441:41–49. https://doi.org/10.1016/J.INS.2018.01.051

    Article  MathSciNet  Google Scholar 

  87. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  88. Kumar Y, Aggarwal A, Tiwari S, Singh K (2018) An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomed Signal Process Control 39:459–473. https://doi.org/10.1016/J.BSPC.2017.08.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice C. Roy.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, S.S.R., Roy, P.C., Shah, M.S. et al. A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods. J Healthc Inform Res 2, 370–401 (2018). https://doi.org/10.1007/s41666-018-0028-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41666-018-0028-7

Keywords

Navigation