Skip to main content
Log in

Electrochemical Biosensors for Detecting Microbial Toxins by Graphene-Based Nanocomposites

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

It is important to develop methods to determine microbial toxins at trace levels since these toxins are ubiquitous commonly found in water and foods, and pose potential threats to both human health and ecosystem safety. Taking the advantages of ultrahigh electron-transfer capability, extra-large surface area and easily functionalized ability, the graphene-based nanocomposites have been employed to fabricate electrochemical biosensors including immunosensors and aptasensors for detecting microbial toxins with high sensitivity. The specificity and selectivity of the electrochemical biosensors for targeting toxins can be achieved by combining graphene nanocomposites with antibodies and/or aptamers. The graphene nanocomposite-based electrochemical biosensors could become a promising technique in the detection of microbial toxins for public and environmental health protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ruchika C, Jay S, Tushar S, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron. 2016;81:532.

    Article  Google Scholar 

  2. Monica C, Diana G, Beatriz PS. Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst. 2012;137:1055.

    Article  Google Scholar 

  3. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169.

    Article  CAS  Google Scholar 

  4. Beatriz JS, Marta P, Jaime R, Alberto E. Magnetocatalytic graphene quantum Dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed. 2017;56:6957.

    Article  Google Scholar 

  5. Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J. 2017;12:1500459.

    Article  Google Scholar 

  6. Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins. 2016;8:239.

    Article  Google Scholar 

  7. Karapetis S, Nikoleli GP, Siontorou CG, Nikolelis DP, Tzamtzis N, Psaroudakis N. Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis. 2016;28:1584.

    Article  CAS  Google Scholar 

  8. Yang T, Huang H, Zhu F, Lin Q, Zhang L, Liu J. Recent progresses in nanobiosensing for food safety analysis. Sensors. 2016;16:118.

    Article  Google Scholar 

  9. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew Chem Int Ed. 2010;49:2114.

    Article  CAS  Google Scholar 

  10. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010;22:1027.

    Article  CAS  Google Scholar 

  11. Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283.

    Article  CAS  Google Scholar 

  12. Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano. 2015;10:46.

    Article  Google Scholar 

  13. Bahadır EB, Sezgintürk MK. Applications of graphene in electrochemical sensing and biosensing. TrAC Trends Anal Chem. 2016;76:1.

    Article  Google Scholar 

  14. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 2001;16:121.

    Article  Google Scholar 

  15. Radi AE, Muñoz-Berbel X, Cortina-Puig M, Marty JL. An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim Acta. 2009;54:2180.

    Article  CAS  Google Scholar 

  16. Tong P, Zhang L, Xu JJ, Chen HY. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron. 2011;29:97.

    Article  CAS  Google Scholar 

  17. Chiriacò MS, Primiceri E, D’amone E, Lonescu RE, Rinaldi R, Maruccio G. EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab Chip. 2011;11:658.

    Article  Google Scholar 

  18. Wang D, Hu W, Xiong Y, Xu Y, Li CM. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1. Biosens Bioelectron. 2015;63:185.

    Article  CAS  Google Scholar 

  19. Loo AH, Bonanni A, Pumera M. Mycotoxin aptasensing amplification by using inherently electroactive graphene-oxide nanoplatelet labels. ChemElectroChem. 2015;2:743.

    Article  CAS  Google Scholar 

  20. Hao N, Jiang L, Qian J, Wang K. Ultrasensitive electrochemical ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation. J Electroanal Chem. 2016;781:332.

    Article  CAS  Google Scholar 

  21. Sun AL, Zhang YF, Sun GP, Wang XN, Tang D. Homogeneous electrochemical detection of ochratoxin A in food stuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron. 2017;89:659.

    Article  CAS  Google Scholar 

  22. Shi ZY, Zheng YT, Zhang HB, He CH, Wu WD, Zhang HB. DNA electrochemical aptasensor for detecting fumonisins B1 based on graphene and thionine nanocomposite. Electroanalysis. 2015;27:1097.

    Article  CAS  Google Scholar 

  23. Fang YS, Chen SY, Huang XJ, Wang LS, Wang HY, Wang JF. Simple approach for ultrasensitive electrochemical immunoassay of Clostridium difficile toxin B detection. Biosens Bioelectron. 2014;53:238.

    Article  CAS  Google Scholar 

  24. Zhu K, Dietrich R, Didier A, Doyscher D, Märtlbauer E. Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins. 2014;6:1325.

    Article  CAS  Google Scholar 

  25. Afkhami A, Hashemi P, Bagheri H, Salimian J, Ahmadi A, Madrakian T. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene–chitosan composite. Biosens Bioelectron. 2017;93:124.

    Article  CAS  Google Scholar 

  26. Sharma A, Rao VK, Kamboj DV, Gaur R, Shaik M, Shrivastava AR. Enzyme free detection of staphylococcal enterotoxin B (SEB) using ferrocene carboxylic acid labeled monoclonal antibodies: an electrochemical approach. New J Chem. 2016;40:8334.

    Article  CAS  Google Scholar 

  27. Lu L, Seenivasan R, Wang YC, Yu JH, Sundaram G. An Electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim Acta. 2016;213:89.

    Article  CAS  Google Scholar 

  28. Tang J, Huang Y, Zhang C, Liu H, Tang D. Amplified impedimetric immunosensor based on instant catalyst for sensitive determination of ochratoxin A. Biosens Bioelectron. 2016;86:386.

    Article  CAS  Google Scholar 

  29. Bruno JG, Kiel JL. Research report use of magnetic beads in selection and detection of biotoxin aptamers by electrochemilumines-cence and enzymatic methods. Biotechniques. 2002;32:178.

    CAS  Google Scholar 

  30. Cruz-Aguado JA, Penner G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem. 2008;80:8853.

    Article  CAS  Google Scholar 

  31. Cruz-Aguado JA, Penner G. Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem. 2008;56:10456.

    Article  CAS  Google Scholar 

  32. Amaya-González S, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MS. Aptamer-based analysis: a promising alternative for food safety control. Sensors. 2013;13:16292.

  33. Labib M, Berezovski MV. Electrochemical aptasensors for microbial and viral pathogens. Biosens Based Aptamers Enzym Spring: Berlin Heidelberg; 2013. p. 155–81.

    Google Scholar 

  34. Huang Y, Chen X, Xia Y, Wu S, Duan N, Ma X, Wang Z. Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Anal Methods. 2014;6:690.

    Article  CAS  Google Scholar 

  35. Bai L, Chai Y, Pu X, Yuan R. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using threeway DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale. 2014;6:2902.

    Article  CAS  Google Scholar 

  36. Liu M, Yu J, Ding X, Zhao G. Photoelectrochemical aptasensor for the sensitive detection of microcystin-LR Based on graphene functionalized vertically-aligned TiO2 nanotubes. Electroanalysis. 2016;28:161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxin Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleta, G.S., Zhao, Z. & Wang, Z. Electrochemical Biosensors for Detecting Microbial Toxins by Graphene-Based Nanocomposites. J. Anal. Test. 2, 20–25 (2018). https://doi.org/10.1007/s41664-018-0051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0051-y

Keywords

Navigation