Skip to main content
Log in

Magnetic Bead-Based Sandwich Immunoassay for Viral Pathogen Detection by Employing Gold Nanoparticle as Carrier

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Enzyme-linked immunosorbent assay (ELISA) provides a convenient way for the detection of viral pathogens. However, conventional ELISA performed on mirowell plates suffers from poor sensitivity, laborious coating and complicated blocking procedures. Herein, we designed a sensitive colorimetric immunoassay by taking advantages of the enrichment and isolation ability of magnetic beads (MBs) and the high loading capacity of gold nanoparticles (AuNPs) for detecting respiratory syncytial virus (RSV) as a pathogen model. RSV was selectively captured and preconcentrated from samples with antibodies functionalized MBs, followed by binding with antibodies labeled AuNPs, which carrying a large amount of alkaline phosphatase (ALP) molecules for colorimetric signal amplification by catalyzing the dephosphorylation of non-colored pNPP to generate colored product pNP. After optimizing the experimental conditions based on the principle of low nonspecific signal, low cost, and high sensitivity, the analytical sensitivity of the developed immunoassay can be improved to 0.27 pg/mL, which is over sevenfold higher than that of commercially available RSV ELISA kits (2 pg/mL). In addition, the total assay time was less than 2.5 h without any pretreatment, which is much more rapid than other reported assays. Therefore, the proposed immunoassay holds great promise for the fabrication of rapid, sensitive, and economic method for the viral pathogen detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Granger JH, Schlotter NE, Crawford AC, Porter MD. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev. 2016;45:3865–82.

    Article  CAS  Google Scholar 

  2. Vaculovicova M, Michalek P, Krizkova S, Macka M, Adam V. Nanotechnology-based analytical approaches for detection of viruses. Anal Methods. 2017;9:2375–91.

    Article  Google Scholar 

  3. Chen CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM. Paper-based ELISA. Angew Chem Int Ed. 2010;49:4771–4.

    Article  Google Scholar 

  4. Hsing I, Xu Y, Zhao W. Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis. 2007;19:755–68.

    Article  CAS  Google Scholar 

  5. Kim YS, Jurng J. A simple colorimetric assay for the detection of metal ions based on peroxidase-like activity of magnetic nanoparticles. Sens Actuat B Chem. 2013;176:253–7.

    Article  CAS  Google Scholar 

  6. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    Article  CAS  Google Scholar 

  7. Yang YC, Wang YT, Tseng WL. Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: application to urinary protein sensing. ACS Appl Mater Interfaces. 2017;9:10069–77.

    Article  CAS  Google Scholar 

  8. Park KS, Kim MI, Cho DY, Park HG. Label-free colorimetric detection of nucleic acid based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small. 2011;7:1521–5.

    Article  CAS  Google Scholar 

  9. Wu J, Wei X, Gan J, Huang L, Shen T, Lou J, Liu B, Zhang JX, Qian K. Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv Funct Mater. 2016;26:4016–25.

    Article  CAS  Google Scholar 

  10. Adams NM, Bordelon H, Wang KK, Albert LE, Wright DW, Haselton FR. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS Appl Mater Interfaces. 2015;7:6062–9.

    Article  CAS  Google Scholar 

  11. Heun Y, Hildebrand S, Heidsieck A, Gleich B, Anton M, Pircher J, Ribeiro A, Mykhaylyk O, Eberbeck D, Wenzel D, Pfeifer A, Woernle M, Krötz F, Pohl U, Mannell H. Targeting of magnetic nanoparticle-coated microbubbles to the vascular wall empowers site-specific lentiviral gene delivery in vivo. Theranostics. 2017;7:295–307.

    Article  Google Scholar 

  12. Guo X, Li W, Luo L, Wang Z, Li Q, Kong F, Zhang H, Yang J, Zhu C, Du Y, You J. External magnetic field-enhanced chemo-photothermal combination tumor therapy via iron oxide nanoparticles. ACS Appl Mater Interfaces. 2017;9:16581–93.

    Article  CAS  Google Scholar 

  13. Tennico YH, Hutanu D, Koesdjojo MT, Bartel CM, Remcho VT. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem. 2010;82:5591–7.

    Article  CAS  Google Scholar 

  14. Akama K, Shirai K, Suzuki S. Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system. Anal Chem. 2016;88:7123–9.

    Article  CAS  Google Scholar 

  15. Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X. An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano. 2017;11:2052–9.

    Article  CAS  Google Scholar 

  16. Wei T, Du D, Zhu MJ, Lin Y, Dai Z. An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl Mater Interfaces. 2016;8:6329–35.

    Article  CAS  Google Scholar 

  17. Lin C, Guo Y, Zhao M, Sun M, Luo F, Guo L, Qiu B, Lin Z, Chen G. Highly sensitive colorimetric immunosensor for influenza virus H5N1 based on enzyme-encapsulated liposome. Anal Chim Acta. 2017;963:112–8.

    Article  CAS  Google Scholar 

  18. Zheng W, Jiang X. Integration of nanomaterials for colorimetric immunoassays with improved performance: a functional perspective. Analyst. 2016;141:1196–208.

    Article  CAS  Google Scholar 

  19. Ambrosi A, Airò F, Merkoçi A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal Chem. 2010;82:1151–6.

    Article  CAS  Google Scholar 

  20. Lin H, Liu Y, Huo J, Zhang A, Pan Y, Bai H, Jiao Z, Fang T, Wang X, Cai Y, Wang Q, Zhang Y, Qian X. Modified enzyme-linked immunosorbent assay strategy using graphene oxide sheets and gold nanoparticles functionalized with different antibody types. Anal Chem. 2013;85:6228–32.

    Article  CAS  Google Scholar 

  21. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30:277–319.

    Article  Google Scholar 

  22. Wang J, Wu ZL, Zhang HZ, Li YF, Huang CZ. Selective colorimetric analysis of spermine based on the cross-linking aggregation of gold nanoparticles chain assembly. Talanta. 2017;167:193–200.

    Article  CAS  Google Scholar 

  23. Li YS, Zhou Y, Meng XY, Zhang YY, Liu JQ, Zhang Y, Wang NN, Hu P, Lu SY, Ren HL, Liu ZS. Enzyme–antibody dual labeled gold nanoparticles probe for ultrasensitive detection of & #x03BA;-casein in bovine milk samples. Biosens Bioelectron. 2014;61:241–4.

    Article  CAS  Google Scholar 

  24. Kumar S, Aaron J, Sokolv K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc. 2008;3:314–20.

    Article  CAS  Google Scholar 

  25. Li Y, Hong M, Qiu B, Lin Z, Chen Y, Cai Z, Chen G. Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosens Bioelectron. 2014;54:358–64.

    Article  CAS  Google Scholar 

  26. Chen L, Sheng Z, Zhang A, Guo X, Li J, Han H, Jin M. Quantum-dots-based fluoroimmunoassay for the rapid and sensitive detection of avian influenza virus subtype H5N1. Luminescence. 2010;25:419–23.

    Article  CAS  Google Scholar 

  27. Liu Y, Brandon R, Cate M, Peng X, Stony R, Johnson M. Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. Anal Chem. 2007;79:8796–802.

    Article  CAS  Google Scholar 

  28. Zeng Q, Li Q, Ji W, Bin X, Song J. Highly sensitive homogeneous immunoassay based on construction of silver triangular nanoplates-quantum dots FRET system. Sci Rep. 2016;6:26534.

    Article  CAS  Google Scholar 

  29. Li Y, Hong M, Qiu B, Lin Z, Cai Z, Chen Y, Chen G. A highly sensitive chemiluminescent metalloimmunoassay for H1N1 influenza virus detection based on a silver nanoparticle label. Chem Commun. 2013;49:10563–5.

    Article  CAS  Google Scholar 

  30. Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta. 2016;913:121–7.

    Article  CAS  Google Scholar 

  31. Alizadeh N, Hallaj R, Salimi A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens Bioelectron. 2017;94:184–92.

    Article  CAS  Google Scholar 

  32. Ahmed SR, Takemeura K, Li TC, Kitamoto N, Tanaka T, Suzuki T, Park EY. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron. 2017;87:558–65.

    Article  CAS  Google Scholar 

  33. Zhou CH, Zhao JY, Pang DW, Zhang ZL. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal Chem. 2014;86:2752–9.

    Article  CAS  Google Scholar 

  34. Zhan L, Wu WB, Yang XX, Huang CZ. Gold nanoparticle-based enhanced ELISA for respiratory syncytial virus. New J Chem. 2014;38:2935–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. 21535006), the National Basic Research Program of China (973 Program, No. 2011CB933600), and the Doctoral Scientific Research Foundation (SWU116058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Mei Li or Cheng Zhi Huang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Wu, W.B., Li, C.M. et al. Magnetic Bead-Based Sandwich Immunoassay for Viral Pathogen Detection by Employing Gold Nanoparticle as Carrier. J. Anal. Test. 1, 298–305 (2017). https://doi.org/10.1007/s41664-017-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0040-6

Keywords

Navigation