Skip to main content
Log in

Fabrication of Non-woven Fabric-Based SERS Substrate for Direct Detection of Pesticide Residues in Fruits

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In surface-enhanced Raman scattering (SERS), flexible substrate plays an important role in target molecular collection from various shape surfaces and increases the analytical sensitivity. In this study, silver nanoparticles (Ag NPs) were deposited on a non-woven fabric used as an SERS substrate by self-assembly, in situ growing or the self-assembly/in situ growing combination method. 4-Aminothiophenol was selected as a model molecular for the evaluation of the SERS performance using the substrates. The Ag NPs substrate prepared by self-assembly/in situ growing method presented the best Raman enhancement effect and its enhancement factor was estimated as high as 3.5 × 106. The substrate was applied to the determination of four pesticide residues on the surfaces of fruit samples through wipe sampling, and the results revealed the good reproducibility of SERS responses and high detection sensitivity. The prepared flexible substrate was simple to fabricate and environmentally friendly. It could be expected to be a useful tool in rapid on-site test of pesticide residues on fruit surfaces because of its high sensitivity, convenience and non-destructive characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aragay G, Pino F, Merkoci A. Nanomaterials for sensing and destroying pesticides. Chem Rev. 2012;112:5317–38.

    Article  CAS  Google Scholar 

  2. Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) 225 detection of synthetic chemical pesticides TrAC Trends. Anal Chem. 2016;85:73–82.

    CAS  Google Scholar 

  3. Seebunrueng K, Santaladchaiyakit Y, Soisungnoen P, Srijaranai S. Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Anal Bioanal Chem. 2011;401:1703–12.

    Article  Google Scholar 

  4. Lee H-J, Shan G, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD. Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin. J Agr Food Chem. 2002;50:5526–32.

    Article  CAS  Google Scholar 

  5. Alam MN, Chowdhury MAZ, Hossain MS, Mijanur Rahman M, Rahman MA, Gan SH. Detection of residual levels and associated health risk of seven pesticides in fresh eggplant and tomato samples from Narayanganj District. J Chem. 2015;2015:7.

    Article  Google Scholar 

  6. Maštovská K, Lehotay SJ, Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal Chem. 2005;77:8129–37.

    Article  Google Scholar 

  7. Menezes Filho A, dos Santos FN, de Paula Pereira PA. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC–MS) for the determination of pesticide residues in mangoes. Talanta. 2010;81:346–54.

    Article  CAS  Google Scholar 

  8. Brito N, Navickiene S, Polese L, Jardim E, Abakerli R, Ribeiro M. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 2002;957:201–9.

    Article  CAS  Google Scholar 

  9. Luo H, Huang Y, Lai K, Rasco BA, Fan Y. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control. 2016;68:229–35.

    Article  CAS  Google Scholar 

  10. Wang J, Kong L, Guo Z, Xu J, Liu J. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem. 2010;20:5271–9.

    Article  CAS  Google Scholar 

  11. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem. 2014;86:6262–7.

    Article  CAS  Google Scholar 

  12. Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces. 2014;6:21931–7.

    Article  CAS  Google Scholar 

  13. Ma Y, Liu H, Mao M, Meng J, Yang L, Liu J. Surface-enhanced Raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine. Anal Chem. 2016;88:8145–51.

    Article  CAS  Google Scholar 

  14. Kodiyath R, Malak ST, Combs ZA, Koenig T, Mahmoud MA, El-Sayed MA, Tsukruk VV. Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J Mater Chem A. 2013;1:2777–88.

    Article  CAS  Google Scholar 

  15. Liu F, Lu YH, Yu WH, Fu Q. W P, Ming H. Tunable surface-enhanced Raman spectroscopy via plasmonic coupling between nanodot-arrayed Ag film and Ag nanocube. Plasmonics. 2013;8:1279–84.

    Article  CAS  Google Scholar 

  16. Ping HM, Chen YZ, Guo HZ, Wang ZW, Zeng DQ, Wang LS, Peng DL. A facile solution approach for the preparation of Ag@Ni core-shell nanocubes. Mater Lett. 2014;116:239–42.

    Article  CAS  Google Scholar 

  17. Yang X, Roling LT, Vara M, Elnabawy AO, Zhao M, Hood ZD, Bao SX, Mavrikakis M, Xia YN. Synthesis and characterization of Pt–Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016;16:6644–9.

    Article  CAS  Google Scholar 

  18. Xia XH, Zeng J, McDearmon B, Zheng YQ, Li QG, Xia YN. Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew Chem Int Ed. 2011;52:12542–6.

    Article  Google Scholar 

  19. Deng Z, Chen X, Wang Y, Fang E, Zhang Z, Chen X. Headspace thin-film microextraction coupled with surface-enhanced Raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine. Anal Chem. 2015;87:633–40.

    Article  CAS  Google Scholar 

  20. Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem. 2016;88:2149–55.

    Article  CAS  Google Scholar 

  21. Ren W, Zhu C, Wang E. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale. 2012;4:5902–9.

    Article  CAS  Google Scholar 

  22. Peksa V, Jahn M, Štolcová L, Schulz V, Proška J, Procházka M, Weber K, Cialla-May D, Popp JR. Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal Chem. 2015;87:2840–4.

    Article  CAS  Google Scholar 

  23. Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun. 2014;50:347–9.

    Article  CAS  Google Scholar 

  24. Schmidt H, Ha NB, Pfannkuche J, Amann H, Kronfeldt HD, Kowalewska G. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS). Mar Pollut Bull. 2004;49:229–34.

    Article  CAS  Google Scholar 

  25. Panarin AY, Chirvony VS, Kholostov KI, Turpin PY, Terekhov SN. Formation of SERS-active silver structures on the surface of mesoporous silicon. J Appl Spectrosc. 2009;2:280–7.

    Article  Google Scholar 

  26. Fan M, Brolo AG. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys. 2009;11:7981.

    Google Scholar 

  27. Zhou N, Meng G, Huang Z, Ke Y, Zhou Q, Hu X. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst. 2016;141:5864–9.

    Article  CAS  Google Scholar 

  28. Meng Y, Lai Y, Jiang X, Zhao Q, Zhan J. Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection. Analyst. 2013;138:2090–5.

    Article  CAS  Google Scholar 

  29. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem. 2014;86:6262–7.

    Article  CAS  Google Scholar 

  30. Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem. 2011;83:8953–8.

    Article  CAS  Google Scholar 

  31. Hubbe MA, Ayoub A, Daystar JS, Venditti RA, Pawlak JJ. Enhanced absorbent products incorporating cellulose and its derivatives. BioResources. 2013;8:6556–629.

    Google Scholar 

  32. Wang J, Yang L, Liu B, Jiang H, Liu R, Yang J, Han G, Mei Q, Zhang Z. Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal Chem. 2014;86:3338–45.

    Article  CAS  Google Scholar 

  33. Gong ZJ, Du HJ, Cheng FS, Wang C, Wang CC, Fan MK. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces. 2014;6:21931–7.

    Article  CAS  Google Scholar 

  34. Fan M, Andrade GF, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.

    Article  CAS  Google Scholar 

  35. Shi YE, Li L, Yang M, Jiang X, Zhao Q, Zhan J. A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst. 2014;139:2525–30.

    Article  CAS  Google Scholar 

  36. Ma C, Trujillo MJ, Camden JP. Nanoporous silver film fabricated by oxygen plasma: a facile approach for SERS substrates. ACS Appl Mater Interfaces. 2016;36:23978–84.

    Article  Google Scholar 

  37. Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT. Batch fabrication of disposable screen printed SERS arrays. Lab Chip. 2012;12:879–81.

    Google Scholar 

  38. Yu WW, White IM. Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem. 2010;82:9626–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Fujian Province (No. 2015J01058) and NFFTBS (No. J1310024) which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiru Wang or Xi Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Deng, Z., Dong, J. et al. Fabrication of Non-woven Fabric-Based SERS Substrate for Direct Detection of Pesticide Residues in Fruits. J. Anal. Test. 1, 322–329 (2017). https://doi.org/10.1007/s41664-017-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0035-3

Keywords

Navigation