Skip to main content
Log in

Boric Acid-Based Dual Modulation Photoluminescent Glucose Sensor Using Thioglycolic Acid-Capped CdTe Quantum Dots

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Most luminescent glucose sensors based on the interaction of glucose with organic boric acids or borates. Herein, a new luminescent glucose sensor is designed using thioglycolic acid-capped CdTe quantum dots in the presence of cheap inorganic boric acid. Both peak position and intensities change upon the addition of glucose because of the interaction of boric acid with glucose and thioglycolic acid-capped CdTe quantum dots, which enables glucose detection by either color change or intensity change. The luminescent intensities change linearly with glucose concentrations in the ranges from 0.03 to 1 mM and 1–25 mM with a detection limit of 10 µM (S/N = 3). Moreover, glucose concentrations can be conveniently detected by color change in the range from 1 mM–25 mM. It displays a highly selective response to glucose over other interfering but biologically important saccharides, amino acids, and common ions.

Graphical Abstract

A thioglycolic acid-capped CdTe QD-based sensor can detect glucose with wide linear range by change in intensity or color in the presence of cheap inorganic boric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsukagoshi K, Shinkai S. Specific complexation with mono- and disaccharides that can be detected by circular dichroism. J Org Chem. 1991;56:4089.

    Article  CAS  Google Scholar 

  2. Eggert H, Frederiksen J, Morin C, Norrild JC. A new glucose-selective fluorescent bisboronic acid. First report of strong α-furanose complexation in aqueous solution at physiological pH1. J Org Chem. 1999;64:3846.

    Article  CAS  Google Scholar 

  3. DiCesare N, Pinto MR, Schanze KS, Lakowicz JR. Saccharide detection based on the amplified fluorescence quenching of a water-soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir. 2002;18:7785.

    Article  CAS  Google Scholar 

  4. Osundiji MA, Lam DD, Shaw J, Yueh CY, Markkula SP, Hurst P, Colliva C, Roda A, Heisler LK, Evans ML. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes. 2012;61:321.

    Article  CAS  Google Scholar 

  5. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano. 2009;3:502.

    Article  CAS  Google Scholar 

  6. Nijland PG, Michailidou I, Witte ME, Mizee MR, van der Pol SMA, van het Hof B, Reijerkerk A, Pellerin L, van der Valk P, de Vries HE, van Horssen J. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia. 2014;62:1125.

    Article  Google Scholar 

  7. Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev. 2013;42:8032.

    Article  CAS  Google Scholar 

  8. Wu WT, Zhou T, Berliner A, Banerjee P, Zhou SQ. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing. Angew Chem Int Edit. 2010;49:6554.

    Article  CAS  Google Scholar 

  9. Yoon J, Czarnik AW. Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J Am Chem Soc. 1992;114:5874.

    Article  CAS  Google Scholar 

  10. Yamamoto H, Ori A, Ueda K, Dusemund C, Shinkai S. Visual sensing of fluoride ion and saccharides utilizing a coupled redox reaction of ferrocenylboronic acids and dye molecules. Chem Commun. 1996;3:407.

    Article  Google Scholar 

  11. Saito S, Massie TL, Maeda T, Nakazumi H, Colyer CL. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution. Sensors. 2012;12:5420.

    Article  CAS  Google Scholar 

  12. Fan J, Jiang XM, Hu YM, Si Y, Ding L, Wu WT. A fluorescent double-network-structured hybrid nanogel as embeddable nanoglucometer for intracellular glucometry. Biomater Sci. 2013;1:421.

    Article  CAS  Google Scholar 

  13. Pizer R, Tihal C. Peroxoborates. Interaction of boric acid and hydrogen peroxide in aqueous solution. Inorg Chem. 1987;26:3639.

    Article  CAS  Google Scholar 

  14. Zhao JZ, Fyles TM, James TD. Chiral binol-bisboronic acid as fluorescence sensor for sugar acids. Angew Chem Int Edit. 2004;43:3461.

    Article  CAS  Google Scholar 

  15. Pizer R, Selzer R. The boric acid/lactic acid system. Equilibria and reaction mechanism. Inorg Chem. 1984;23:3023.

    Article  CAS  Google Scholar 

  16. Rhee SG. H2O2, a necessary evil for cell signaling. Science. 2006;312:1882.

    Article  Google Scholar 

  17. Parchment RE, Pierce GB. Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res. 1989;49:6680.

    CAS  Google Scholar 

  18. Allen RD, Roberts T. The relationship between the immunosuppressive and cytotoxic effects of human seminal plasma. Am J Reprod Immunol. 1986;11:59.

    Article  CAS  Google Scholar 

  19. Paterson IA, Juorio AV, Boulton AA. Possible mechanism of action of deprenyl in parkinsonism. Lancet. 1990;336:183.

    Article  CAS  Google Scholar 

  20. Lee JH, Tang IN, Weinsteinlloyd JB. A non-enzymatic method for the determination of hydrogen peroxide in atmospheric samples. Anal Chem. 1990;62:2381.

    Article  CAS  Google Scholar 

  21. Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signalling pathways. Biochem Soc T. 2001;29:345.

    Article  CAS  Google Scholar 

  22. Woods JR, Plessinger MA, Fantel A. An introduction to reactive oxygen species and their possible roles in substance abuse. Obstet Gyn Clin N Am. 1998;25:219.

    Article  Google Scholar 

  23. Kubo Y, Nishiyabu R, James TD. Hierarchical supramolecules and organization using boronic acid building blocks. Chem Commun. 2015;51:2005.

    Article  CAS  Google Scholar 

  24. Tang YC, Yang Q, Wu T, Liu L, Ding Y, Yu B. Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application to glucose detection. Langmuir. 2014;30:6324.

    Article  CAS  Google Scholar 

  25. Tsuchiya M, Kanekiyo Y. Colorimetric sensing of polyhydroxy compounds by an inclusion complex of boronic acid-modified amylose. Analyst. 2011;136:2521.

    Article  CAS  Google Scholar 

  26. Pandya A, Sutariya PG, Menon SK. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum. Analyst. 2013;138:2483.

    Article  CAS  Google Scholar 

  27. Song F, Tang PS, Durst H, Cramb DT, Chan WCW. Nonblinking plasmonic quantum dot assemblies for multiplex biological detection. Angew Chem Int Edit. 2012;51:8773.

    Article  CAS  Google Scholar 

  28. Wu YZ, Chakrabortty S, Gropeanu RA, Wilhelmi J, Xu Y, Er KS, Kuan SL, Koynov K, Chan Y, Weil T. pH-responsive quantum dots via an albumin polymer surface coating. J Am Chem Soc. 2010;132:5012.

    Article  CAS  Google Scholar 

  29. James TD, Sandanayake KRAS, Shinkai S. A glucose-selective molecular fluorescence sensor. Angew Chem Int Edit. 1994;33:2207.

    Article  Google Scholar 

  30. Cordes DB, Gamsey S, Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew Chem Int Edit. 2006;45:3829.

    Article  CAS  Google Scholar 

  31. Cheng LX, Deng SY, Lei JP, Ju HX. Disposable electrochemiluminescent biosensor using bidentate-chelated CdTe quantum dots as emitters for sensitive detection of glucose. Analyst. 2012;137:140.

    Article  CAS  Google Scholar 

  32. Yang WQ, Yan J, Springsteen G, Deeter S, Wang BH. A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg Med Chem Lett. 2003;13:1019.

    Article  CAS  Google Scholar 

  33. Wu WT, Zhou T, Shen J, Zhou SQ. Optical detection of glucose by CdS quantum dots immobilized in smart microgels. Chem Commun. 2009;4:4390.

    Article  Google Scholar 

  34. Kuivila HG, Armour AG. Electrophilic displacement reactions. IX. Effects of substituents on rates of reactions between hydrogen peroxide and benzeneboronic acid1–3. J Am Chem Soc. 1957;79:5659.

    Article  CAS  Google Scholar 

  35. Springsteen G, Wang BH. A detailed examination of boronic acid–diol complexation. Tetrahedron. 2002;58:5291.

    Article  CAS  Google Scholar 

  36. Sun W, Wu JY, Li J, Fang H, Du LP, Li MY. Boronate can be the fluorogenic switch for the detection of hydrogen peroxide. Curr Med Chem. 2012;19:3622.

    Article  CAS  Google Scholar 

  37. James TD, Sandanayake KRAS, Iguchi R, Shinkai S. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J Am Chem Soc. 1995;117:8982.

    Article  CAS  Google Scholar 

  38. Dickinson BC, Srikun D, Chang CJ. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol. 2010;14:50.

    Article  CAS  Google Scholar 

  39. Lippert AR, De Bittner GCV, Chang CJ. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Accounts Chem Res. 2011;44:793.

    Article  CAS  Google Scholar 

  40. James TD, Sandanayake KRAS, Shinkai S. Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Edit. 1996;35:1910.

    Article  Google Scholar 

  41. Li GP, Zhu DJ, Liu Q, Xue L, Jiang H. Rapid detection of hydrogen peroxide based on aggregation induced ratiometric fluorescence change. Org Lett. 2013;15:924.

    Article  CAS  Google Scholar 

  42. Matsumoto A, Ikeda S, Harada A, Kataoka K. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules. 2003;4:1410.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 21475123 and 21505128), Chinese Academy of Sciences (CAS) and Faculty Development Program of the Bahauddin Zakaryia University, Multan, Pakistan (100 Foreign Scholarships) (No. PF/Cont./2-50/Admin/5398).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyuan Liu or Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1939 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, S., Gao, W., Lai, J. et al. Boric Acid-Based Dual Modulation Photoluminescent Glucose Sensor Using Thioglycolic Acid-Capped CdTe Quantum Dots. J. Anal. Test. 1, 291–297 (2017). https://doi.org/10.1007/s41664-017-0029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0029-1

Keywords

Navigation