Skip to main content
Log in

Non-Linear and Non-Iterative Based Transceiver Design for SU-MIMO Systems

  • Review paper
  • Published:
Journal of Communications and Information Networks

Abstract

This paper considers the design of a low-complexity and high-performance precoder for multiple-input multiple-output (MIMO) systems. The precoder is designed by combining both nonlinear and non-iterative processing strategies. The proposed nonlinear precoding techniques employ a nonlinear constellation precoding technique based on maximum distance separable codes at the transmitter. We propose to reduce the computational complexity in iterative-based precoding algorithms by using less complex non-iterative singular value decomposition-based joint precoder and decoder pair design. The maximum likelihood detection for the linear MIMO channel is considered. The simulation results showed that the proposed nonlinear and non-iterative precoding schemes outperform the conventional linear MIMO precoder design, even when a reduced-complexity suboptimal strategy is adopted, considering the bit error rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, S. Roy. On joint transmitter and receiver optimization for multiple-input-multiple-output (MIMO) transmission systems [J]. IEEE Transactions on Communications, 1994, 42(12): 3221–3231

    Article  Google Scholar 

  2. L. Zhao, L.W. Mo, Y. Ma, et al. Diversity and multiplexing trade-off in general fading channels [J]. IEEE Transactions on Information Theory, 2007, 53(4): 1549–1557

    Article  MathSciNet  MATH  Google Scholar 

  3. G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Labs Technical Journal, 1996, 1(2): 41–59

    Article  Google Scholar 

  4. M. Raja, P. Muthuchidambaranathan. SVD-based transmit beamforming for various modulations with convolution encoding [J]. ICTACT Journal on Communication Technology, 2011, 2(3): 393–399

    Article  Google Scholar 

  5. M. Raja, P. Muthuchidambaranathan. BER performance of SVD-based transmit beamforming with various modulation techniques [C]//5th IEEE International Conference on Industrial and Information Systems (ICIIS), 2010: 155–160

    Google Scholar 

  6. M. Raja, P. Muthuchidambaranathan. Performance analysis of closedloop MIMO system [J]. International Journal of Computer Applications, 2011, 4(12): 14–19

    Article  Google Scholar 

  7. G. Thiagarajan. Novel transmit precoding methods for rayleigh fading multiuser TDD-MIMO systems with CSIT and no CSIR [J]. IEEE Transactions on Vehicular Technology, 2015, 64(3): 973–984

    Article  Google Scholar 

  8. V. Tarokh, N. Seshadri, A. R. Calderbank. Space-time codes for high data rate wireless communication: performance criterion and code construction [J]. IEEE Transactions on Information Theory, 1998, 44(2): 744–765

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kang, M. S. Alouini. Performance analysis of MIMO MRC systems over Rician fading channels [C]//IEEE Vehicular Technology Conference, 2002: 869–873

    Google Scholar 

  10. P. A. Dighe, R. K. Mallik, S. S. Jamuar. Analysis of transmit-receive diversity in Rayleigh fading [J]. IEEE Transactions on Communications, 2003, 51(4): 694–703

    Article  Google Scholar 

  11. D. A. Basnayaka, M. D. Renzo, H. Haas. Massive but few active MIMO [J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 6861–6877

    Article  Google Scholar 

  12. H. Sampath, P. Stoica, A. Paulraj. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion [J]. IEEE Transactions on Communications, 2001, 49(12): 2198–2206

    Article  Google Scholar 

  13. A. Scaglione, P. Stoica, S. Barbarossa, et al. Optimal designs for spacetime linear precoders and decoders [J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1051–1064

    Article  Google Scholar 

  14. A. Yadav, M. Juntti, J. Lilleberg. Linear precoder design for correlated partially coherent channels with discrete inputs [C]//Proceedings of the Tenth International Symposium on Wireless Communication Systems, 2013: 1–5

    Google Scholar 

  15. M. Bengtsson, B. Ottersten. Optimal and suboptimal transmit beamforming [M]. Handbook of Antennas in Wireless Communication, CRC Press, 2001

    Google Scholar 

  16. H. Sampat, A. Paulraj. Linear precoding for space-time coded systems with known fading correlations [J]. IEEE Communication Letters, 2002, 6(6): 239–241

    Article  Google Scholar 

  17. J. Zhang, Y. Wu, S. Zhou, et al. Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems [J]. IEEE Communication Letters, 2005, 9(11): 991–993

    Article  Google Scholar 

  18. X. Zhang, D. P. Palomar. Robust design of linear mimo transceivers under channel uncertainty [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006: IV77–IV80

    Google Scholar 

  19. P. Xiao, M. Sellathurai. Improved linear transmit processing for singleuser and multi-user MIMO communications systems [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1768–1779

    Article  MathSciNet  Google Scholar 

  20. M. H. Ding, S. D. Blostein. MIMO minimum total MSE transceiver design with imperfect CSI at both ends [J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1141–1150

    Article  MathSciNet  Google Scholar 

  21. K. Sanka, M. Raja, P. Muthuchidambaranathan. Improved minimum total MSE transceiver design with imperfect CSI at both ends of a MIMO link [C]//IEEE International Conference on Electronics Computer Technology (ICECT), 2011: 23–27

    Google Scholar 

  22. M. Raja, K. Sanka, P. Muthuchidambaranathan. Minimum total MSE based transceiver design for single-user MIMO system [C]//Proceedings of The 17th IEEE Asia-Pacific Conference on Communications (APCC-2011), 2011: 720–725

    Chapter  Google Scholar 

  23. M. Raja, P. Muthuchidambaranathan, H. H. Nguyen. Transceiver design for MIMO systems with improper modulations [J]. Wireless Personal Communications, Springer, 2013, 68(2): 265–280

    Article  Google Scholar 

  24. I. Jimenez, M. Barrenechea, M. Mendicute, et al. Non-linear precoding approaches for non-regenerative multiuser MIMO relay systems [C]//Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012: 1399–1403

    Google Scholar 

  25. J. H. Choi, B. Lin. MMSE-based random sampling for iterative detection for large-scale MIMO systems [J]. Journal of Communications and Information Networks, Springer, 2016, 1(2): 29–36

    Article  Google Scholar 

  26. X. L. Sun, K. Xu, Y. Xu. Multipair two-way massive MIMO AFrelaying with ZFR/ZFT and hardware impairments over high-altitude platforms [J]. Journal of Communications and Information Networks, Springer, 2016, 1(3): 105–114

    Article  MathSciNet  Google Scholar 

  27. D. A. Basnayaka, M. D. Renzo, H. Haas. Massive but few active MIMO [J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 6861–6877

    Article  Google Scholar 

  28. S. Zhou, G. B. Giannakis. Optimal transmitter eigen-beamforming and space time block coding based on channel mean feedback [J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2599–2613

    Article  Google Scholar 

  29. M. Raja, P. Muthuchidambaranathan. SVD-assisted joint precoder and decoder design for the uplink of MU-MIMO systems with improper modulation [J]. Wireless Personal Communications, Springer, 2013, 73(3): 1129–1142

    Article  Google Scholar 

  30. M. Raja, P. Muthuchidambaranathan. A novel nonlinear constellation precoding for OFDM systems with subcarrier grouping [J]. Wireless Personal Communications, Springer, 2013, 73(3): 867–884

    Article  Google Scholar 

  31. Y. Shang, D. Wang, X. G. Xia. Signal space diversity techniques with fast decoding based on MDS codes [J]. IEEE Transactions on Communications, 2010, 58(9): 2525–2536

    Article  Google Scholar 

  32. T. Kailath, H. Vikalo, B. Hassibi. MIMO receive algorithms space-time wireless systems: from array processing to MIMO communications [M]. Cambridge: Cambridge University Press, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Muthalagu.

Additional information

The associate editor coordinating the review of this paper and approving it for publication was R. S. Kshetrimayum.

Raja Muthalagu received his Ph.D. degree in Wireless Communication from National Institute of Technology (NIT), Tiruchirappalli, India in 2014. He joined the Department of Electrical and Electronics Engineering, BITS, Pilani, Dubai Campus, in 2015, where he is currently a full Assistant Professor. His research interests include orthogonal frequency division multiplexing, multiple-input and multiple-output systems, and network security.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthalagu, R. Non-Linear and Non-Iterative Based Transceiver Design for SU-MIMO Systems. J. Commun. Inf. Netw. 3, 14–22 (2018). https://doi.org/10.1007/s41650-018-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41650-018-0014-5

Keywords

Navigation